某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于65).设每件商品的售价上涨x元(x为正整数),每个月的销售
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:52:40
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于65).设每件商品的售价上涨x元(x为正整数),每个月的销售
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于65).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?
(3)每件商品的售价定为多少时,每个月的利润恰为2200元?请根据以上结论,请你直接写出售价在什么范围内,每个月的利润不低于2200元?
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于65).设每件商品的售价上涨x元(x为正整数),每个月的销售
(1)y=(210-10x)(50+x-40) = -10x^2+110x+2100 =-10(x-5.5)^2+2402.5 (0≤x≤15)
(2)∵X为正整数 ∴最大利润代入X=5(或者6),y=2400
(3)根据题意,得(210-10x)(10+x)=2200.
整理,得x2-11x+10=0,解这个方程,得x1=1,x2=10
∴当x=1时,50+x=51,当x=10时,50+x=60.
答:当每件商品的售价定为51元或60元时,每个月的利润恰为2200元
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50...
全部展开
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴当x=1时,50+x=51,当x=10时,50+x=60.
∴当售价定为每件51或60元,每个月的利润为2200元.
当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元)
收起
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50...
全部展开
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴当x=1时,50+x=51,当x=10时,50+x=60.
∴当售价定为每件51或60元,每个月的利润为2200元.
当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).
收起
(1)当50≤x≤80时,y=210-(x-50),即y=260-x,
当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.
则
y=260-x (50≤x≤80)y=420-3x(80<x<140)
,
(2)由利润=(售价-成本)×销售量可以列出函数关系式
w=-x2+300x-10400(50≤x...
全部展开
(1)当50≤x≤80时,y=210-(x-50),即y=260-x,
当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.
则
y=260-x (50≤x≤80)y=420-3x(80<x<140)
,
(2)由利润=(售价-成本)×销售量可以列出函数关系式
w=-x2+300x-10400(50≤x≤80)
w=-3x2+540x-16800(80<x<140),
(3)当50≤x≤80时,w=-x2+300x-10400,
当x=80有最大值,最大值为7200,
当80<x<140时,w=-3x2+540x-16800,
当x=90时,有最大值,最大值为7500,
故售价定为90元.利润最大为7500元.
表扬我!
收起
你可以去新东方的网站搜一下,会有的。
中考频道:zhongkao.xdf.cn GRS频道:grs.xdf.cn 学吧:x.xdf.cn 问吧:w.xdf.cn
希望能帮助到您。望采纳,谢谢。
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x...
全部展开
(1)由题意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x为整数);
(2)由(1)中的y与x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴当x=5.5时,y有最大值2402.5.
∵0<x≤15,且x为整数,
当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.
(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴当x=1时,50+x=51,当x=10时,50+x=60.
∴当售价定为每件51或60元,每个月的利润为2200元.
当售价不低于51或60元,每个月的利润为2200元.
当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).
收起