抛物线y²=2px(p>0)与双曲线x²-y²=1相交的一个交点为Μ,双曲线的两焦点分别为f1、f2,若ΜF1*ΜF2=5/4,⑴ 证明:Μ点在F1、F2为焦点的椭圆上⑵求抛物线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:03:27

抛物线y²=2px(p>0)与双曲线x²-y²=1相交的一个交点为Μ,双曲线的两焦点分别为f1、f2,若ΜF1*ΜF2=5/4,⑴ 证明:Μ点在F1、F2为焦点的椭圆上⑵求抛物线方程
抛物线y²=2px(p>0)与双曲线x²-y²=1相交的一个交点为Μ,双曲线的两焦点分别为f1、f2,
若ΜF1*ΜF2=5/4,
⑴ 证明:Μ点在F1、F2为焦点的椭圆上
⑵求抛物线方程

抛物线y²=2px(p>0)与双曲线x²-y²=1相交的一个交点为Μ,双曲线的两焦点分别为f1、f2,若ΜF1*ΜF2=5/4,⑴ 证明:Μ点在F1、F2为焦点的椭圆上⑵求抛物线方程

解答如下图: