已知a的平方+a+1=0,求a的2000次方+a的2001次方+.+a的2008次方的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:53:37

已知a的平方+a+1=0,求a的2000次方+a的2001次方+.+a的2008次方的值
已知a的平方+a+1=0,求a的2000次方+a的2001次方+.+a的2008次方的值

已知a的平方+a+1=0,求a的2000次方+a的2001次方+.+a的2008次方的值
a^2+a+1=0,显然a≠0,那么:
方程两边同乘a^2006,得:a^2008+a^2007+a^2006=0
方程两边同乘a^2003,得:a^2005+a^2004+a^2003=0
方程两边同乘a^2000,得:a^2002+a^2001+a^2000=0
所以
a的2000次方+a的2001次方+.+a的2008次方=0

a的2000次方+a的2001次方+..........+a的2008次方
=a的2000次方(1+a+a^2+.....a^8)
=a的2000次方(a^3+.....a^8)
=a的2003次方(1+a+a^2+a^4+a^5+a^6)
=a的2003次方(a^3+a^4+a^5)
=a的2006次方(1+a+a^2)
=0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0<...

全部展开

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

收起

a^2000+a^2001+....+a^2008
=a^2000(a^2+a+1)+a^2003(a^2+a+1)+a^2005(a^2+a+1)
=0

0

答案为0
a^2000*(1+a+a^2+a^3....+a^8) 因为1+a+a^2=0所以
=a^2000*(a^3+a^4+a^5+a^6+a^7+a^8)
=a^2003*(1+a+a^2+a^3+a^4+a^5)
=a^2006*(1+a+a^2)=0