经过点﹙3,0﹚且与椭圆9x²+4y²=36有共同焦点的椭圆方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:46:36

经过点﹙3,0﹚且与椭圆9x²+4y²=36有共同焦点的椭圆方程是
经过点﹙3,0﹚且与椭圆9x²+4y²=36有共同焦点的椭圆方程是

经过点﹙3,0﹚且与椭圆9x²+4y²=36有共同焦点的椭圆方程是
设椭圆方程为:x²/b²+y²/a²=1 过点(3,0)可得:
9/b²=1 得:b²=9
与9x²+4y²=36有共同焦点,可得:
可得:c²=9-4=5
即:a²-b²=5 得:a²=14
所以椭圆方程为:
x²/9+y²/14=1