a大于0,b大于0证明 1.a+1/a大于等于2 2.(a+b)*(1/a+1/b)大于等于4(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等于跟号a^2+b^2/2a大于0b大于0.(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:59:40
a大于0,b大于0证明 1.a+1/a大于等于2 2.(a+b)*(1/a+1/b)大于等于4(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等于跟号a^2+b^2/2a大于0b大于0.(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等
a大于0,b大于0证明 1.a+1/a大于等于2 2.(a+b)*(1/a+1/b)大于等于4
(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等于跟号a^2+b^2/2
a大于0b大于0.(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等于跟号a^2+b^2/2这个怎么证明?
a大于0,b大于0证明 1.a+1/a大于等于2 2.(a+b)*(1/a+1/b)大于等于4(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等于跟号a^2+b^2/2a大于0b大于0.(1/a+1/b)分之2小于等于跟号ab小于等于a+b/2小于等
a+1/a-2=(a^2-2a+1)a=(a-1)^2/a>=0,故a+1/a>=0
(a+b)*(1/a+1/b)-4=((a+b)^2-4ab)/ab=(a^2+b^2+2ab-4ab)/ab=(a-b)^2/ab>=0,故a+b)*(1/a+1/b)大于等于4
a+1/a=(a*a+1)/a={(a-1)(a-1)+2a}/a=(a-1)(a-1)/a+2
因为(a-1)的平方大于等于0,a大于0,所以原式大于等于2
同理,第二小题展开后,a/b+b/a+2可以得a/b+b/a大于等于2。
1
(√a-1/√a)≥0 ,a+1/a≥2
2
(a+b)*(1/a+1/b)=2+[a/b+1/(a/b)]≥2+2
(a+b)*(1/a+1/b)≥4