z=(x^2+y^2)/4 y=4,在点(2,4,5)处的切线与正向x轴所成的倾角是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:48:56

z=(x^2+y^2)/4 y=4,在点(2,4,5)处的切线与正向x轴所成的倾角是多少
z=(x^2+y^2)/4 y=4,在点(2,4,5)处的切线与正向x轴所成的倾角是多少

z=(x^2+y^2)/4 y=4,在点(2,4,5)处的切线与正向x轴所成的倾角是多少
将y=4(曲面方程) 代入曲面方程Z=1/4(X^2+y^2),即题目给的曲线方程化简的形式:Z=1/4X^2+4 (注:建立空间直角坐标系,可知两曲面的交线为一条曲线)
然后Z关于X求导数得到:
Z‘=1/2X
然后将点(2,4,5)的横坐标2代入导函数Z‘=1/2X 得到Z’=1 即tanα=1(设倾斜角为α) 即 α=45°