1+1/3+1/5+...+1/(2n-1) 比值审敛法证明收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:46:32
1+1/3+1/5+...+1/(2n-1) 比值审敛法证明收敛性
1+1/3+1/5+...+1/(2n-1) 比值审敛法证明收敛性
1+1/3+1/5+...+1/(2n-1) 比值审敛法证明收敛性
1/2n
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
3(n-1)(n+3)-2(n-5)(n-2)
2^n*3^n*5^(n+1)/30^n
n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10这道题怎么解
1/[n(n+1)]+1/[(n+1)(n+2)]+1/[(n+2)(n+3)]+1/[(n+3)(n+4)]+[(n+4)(n+5)}怎么算谢谢了,
1+(n+2)+(2n+3)+(3n+4)+(4n+5)+……((n-1)n+n)的答案
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简(n+1)(n+2)(n+3)
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
2^n/n*(n+1)
求limn→无穷(1+2^n+3^n+4^n+5^n)^1/n
lim(3^2n+5^n)/(1+9^n)3^2n or 5^n
求证:N=(5^2)*(3^2n+1)*(2^n)-(3^n)*(6^n+2)
已知n^2-n -1=0,则n^3-n^2-n +5=
lim2^n +3^n/2^n+1+3^n+1