x/(x-1)=(y²+4x-2)/(y²+4x-1),则y²+4y+x值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:44:49

x/(x-1)=(y²+4x-2)/(y²+4x-1),则y²+4y+x值为
x/(x-1)=(y²+4x-2)/(y²+4x-1),则y²+4y+x值为

x/(x-1)=(y²+4x-2)/(y²+4x-1),则y²+4y+x值为
设y^2+4y+x=t
y^2+4y=t-x 代入方程:
x/(x-1)=(t-x-2)/(t-x-1)
tx-x^2-x=tx-x^2-2x-t+x+2
(t-1)x-x^2=-x^2+(t-2+1)x+2-t
(t-1-t+2-1)x=2-t
0=2-t
t=2
即:y^2+4y+x=2

2
令t=y²+4y+x
则 x/(x-1)=(t-x-2)/(t-x-1)
解出t=2

x/(x-1) = (y^2+4*x-2)/(y^2+4*x-1)
y=[{y = sqrt(-5*x+2)}, {y = -sqrt(-5*x+2)}]
y^2+4*y+x=(sqrt(-5*x+2), -sqrt(-5*x+2))^2+(4*sqrt(-5*x+2), -4*sqrt(-5*x+2))+x