如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍长把AE延到了F,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:27:06
如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍长把AE延到了F,
如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍
如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!
我已经用倍长把AE延到了F,又连接了FB!下面该咋做呀?
不要用中位线和平行四边形之类的,因为我还没学……角互相倒来倒去是不是就能到出来呢?不知道……总之过程请写清楚些,
如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍如图,已知,D为△ABC中BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证 AC=2AE!我已经用倍长把AE延到了F,
延长AE到F,使EF=AE,连接DF
∵AE是△ABD的中线
∴BE=ED
在△ABE与△FDE中
BE=DE
∠AEB=∠DEF(对顶角相等)
AE=EF
∴△ABE≌△FDE(SAS)
∴AB=DF,∠BAE=∠EFD
∵∠ADB是△ADC的外角
∴∠DAC=∠ACD=∠ADB=∠BAD
∴∠BAE+∠EAD=∠BAD
∠BAE=∠EFD
∴∠EFD+∠EAD=∠DAC=∠ACD
∴∠ADF=∠ADC
在△ADF与△ADC中
AD=AD
∠ADF=∠ADC
FD=DC
∴△ADF≌△ADC(SAS)
∴AF=AC
∵AF=AE+EF
AE=EF
∴AC=2AE
一定是对的!
在做这类题时要学会画图,可惜图片无法插上,以下答案可参考
因为 ∠BDA=∠BAD 所以 BA=BD
因为 CD=AB 所以 AB=CD,所以AB=1/2BC
因为AE是△ABD的中线,所以BE=1/2AB
所以AB/BC=BE/AB=1/2
因为△ABE与△ABC共用一个角∠ABD 所以AE/AC=BE...
全部展开
在做这类题时要学会画图,可惜图片无法插上,以下答案可参考
因为 ∠BDA=∠BAD 所以 BA=BD
因为 CD=AB 所以 AB=CD,所以AB=1/2BC
因为AE是△ABD的中线,所以BE=1/2AB
所以AB/BC=BE/AB=1/2
因为△ABE与△ABC共用一个角∠ABD 所以AE/AC=BE/AB=1/2
所以AC=2AE
收起
证明:延长AE到F,使EF=AE,连结BF,
下面就证三角形BEF全等于三角形DEA,可得BF=AD,角F=角EAD,
接着再证三角形ABF全等于三角形ADC,这样可得:AF=AC,
问题得到了解决。如何证明出∠ABF=∠ADC??????????????????????????????角ABF=角ABD+角FBD=角ABD+角BDA=角...
全部展开
证明:延长AE到F,使EF=AE,连结BF,
下面就证三角形BEF全等于三角形DEA,可得BF=AD,角F=角EAD,
接着再证三角形ABF全等于三角形ADC,这样可得:AF=AC,
问题得到了解决。
收起
因为 ∠BDA=∠BAD 所以 BA=BD
因为 CD=AB 所以 AB=CD,所以AB=1/2BC
因为AE是△ABD的中线,所以BE=1/2AB
所以AB/BC=BE/AB=1/2
因为△ABE与△ABC共用一个角∠ABD 所以AE/AC=BE/AB=1/2
所以AC=2AE因为△ABE与△ABC共用...
全部展开
因为 ∠BDA=∠BAD 所以 BA=BD
因为 CD=AB 所以 AB=CD,所以AB=1/2BC
因为AE是△ABD的中线,所以BE=1/2AB
所以AB/BC=BE/AB=1/2
因为△ABE与△ABC共用一个角∠ABD 所以AE/AC=BE/AB=1/2
所以AC=2AE
收起
wdfVTT
延长AE到F,使EF=AE,连接DF
∵AE是△ABD的中线
∴BE=ED
在△ABE与△FDE中
BE=DE
∠AEB=∠DEF(对顶角相等)
AE=EF
∴△ABE≌△FDE(SAS)
∴AB=DF,∠BAE=∠EFD
∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD
∵∠ADF=∠BDF+∠ADB<...
全部展开
延长AE到F,使EF=AE,连接DF
∵AE是△ABD的中线
∴BE=ED
在△ABE与△FDE中
BE=DE
∠AEB=∠DEF(对顶角相等)
AE=EF
∴△ABE≌△FDE(SAS)
∴AB=DF,∠BAE=∠EFD
∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD
∵∠ADF=∠BDF+∠ADB
∠B=∠BDF ∠BAD=∠ADB
∴∠ADF=∠ADC
在△ADF与△ADC中
AD=AD
∠ADF=∠ADC
FD=DC
∴△ADF≌△ADC(SAS)
∴AF=AC
∵AF=AE+EF
AE=EF
∴AC=2AE
收起