PA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PBPA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PB 的中点,点E在边BC上移动 (Ⅰ)点E为BC的中点时,试判断EF与平面 PAC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:52:19
PA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PBPA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PB 的中点,点E在边BC上移动 (Ⅰ)点E为BC的中点时,试判断EF与平面 PAC
PA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PB
PA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PB 的中点,点E在边BC上移动 (Ⅰ)点E为BC的中点时,试判断EF与平面 PAC的位置关系,并说明理由;(Ⅱ)证明: 无论点E在边BC的何处,都有PE⊥AF;(Ⅲ )当BE等于何值时,二面角P-DE-A的大小为45º
PA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PBPA⊥平面ABCD,ABCD是矩形,PA=AB=1 ,PD与平面ABCD所成角是30°,点F是PB 的中点,点E在边BC上移动 (Ⅰ)点E为BC的中点时,试判断EF与平面 PAC
首先这个图画得不成比例,影响直觉判断.
1)EF//平面PAC.证明:因为点F是PB 的中点,点E为BC的中点,所以EF是三角形BPC的中位线路,所以EF//PC,又因为EF不再平面PAC内,所以EF//平面PAC.
2)因为PA垂直平面ABCD、ABCD是矩形,所以BC垂直PA、BC垂直AB,又因为PA与AB相交于A,所以BC垂直PA、AB所在的平面PAB,所以BC垂直平面PAB内的直线AF.
又因为PA⊥平面ABCD,PA=AB,所以三角形PAB是等腰直角三角形,而点F是PB 的中点,所以AF垂直PB(等腰三角形底边的中线和垂直平分线重合).
所以直线AF既垂直BC又垂直PB,且BC与PB相交于B,所以直线AF垂直BC、PB所在的平面PBC,而无论点E在边BC的何处,PE都属于平面PBC,所以直线AF垂直PE.
3)连接DE,作AG垂直DE,连接PG、AE,则角PGA就是二面角P-DE-A.显然三角形PAG是直角三角形.
若要角PGA=45度,则要求三角形PAG是等腰直角三角形,即PA=AG=1.
因为PD与平面ABCD所成角就是角PDA=30°,所以AD/PA=cot30°,AD=BC=根号3.
显然三角形ADE面积=DE*AG/2=矩形ABCD面积的一半=AB*AD/2=(根号3)/2,解得DE=根号3.
在直角三角形EDC内,DE=根号3,DC=AB=1,所以CE^2=(根号3)^2-1^2=2,CE=根号2,从而BE=BC-CE=(根号3)-(根号2)