设函数f(x)=2x^3-3(a-1)x^2+1,a包含于R 1、求f(x)的单调区间; 2、讨论f(x)的极值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:44:58

设函数f(x)=2x^3-3(a-1)x^2+1,a包含于R 1、求f(x)的单调区间; 2、讨论f(x)的极值
设函数f(x)=2x^3-3(a-1)x^2+1,a包含于R 1、求f(x)的单调区间; 2、讨论f(x)的极值

设函数f(x)=2x^3-3(a-1)x^2+1,a包含于R 1、求f(x)的单调区间; 2、讨论f(x)的极值
设函数f(x)=2x^3-3(a-1)x^2+1,a包含于R
1、求f(x)的单调区间;
f(x+Δx)-f(x)
=2(x+Δx)^3-3(a-1)(x+Δx)²+1-(2x^3-3(a-1)x²+1)
=2x^3+6x²Δx+6x(Δx)²+2(Δx)^3-3(a-1)(x²+2xΔx+(Δx)²)+1-2x^3+3(a-1)x²+1
=6x²Δx+6x(Δx)²+2(Δx)^3-3(a-1)(2xΔx+(Δx)²)
=6x²Δx+6x(Δx)²+2(Δx)^3-6(a-1)xΔx-3(a-1)(Δx)²
=Δx(6x²-6(a-1-Δx)x+2(Δx)²-3(a-1)(Δx))
当Δx接近于0时,上式若要大于0,只需考虑
6x²-6(a-1)x>0
即x(x-(a-1)>0
当a=1时,f(x)在(-∞,+∞)上递增
当a>1时,f(x)在(0,a-1)上递减,在(-∞,0)∪(a-1,+∞)上递增
当a1时,函数的极小值为f(a-1)=-(a-1)^3+1,极大值为f(0)=1
当a