设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:(新东方课件里的解答也类似)∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:42:19
设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:(新东方课件里的解答也类似)∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x
设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:(新东方课件里的解答也类似)
∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]
∴当│x│1时,f(x)=0
∴函数f(x)有可能是间断点的点只能是点x=±1
∵lim(x->-1+)f(x)=lim(x->-1+)(1+x)=0
lim(x->-1-)f(x)=0
f(-1)=(1+(-1))/2=0
∴lim(x->-1+)f(x)=lim(x->-1-)f(x)=f(0)
∴x=-1是连续点
∵lim(x->1+)f(x)=0
lim(x->1-)f(x)=lim(x->1-)(1+x)=2
f(1)=(1+1)/2=1
∴lim(x->1+)f(x)≠lim(x->1-)f(x)
∴根据间断点分类定义知,x=1是函数f(x)的第一类间断点
故函数f(x)只有一个第一类间断点x=1.
我有个疑问,比如说当|x|>1时 lim(n→+∞)[(1+x)/(1+x^2n)]=0,lim(n→-∞)[(1+x)/(1+x^2n)]=1+x,此时f(x)不是不存在吗?题目里的条件是不是错了,n应该是趋近正无穷大?
设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:(新东方课件里的解答也类似)∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x
关于你给出的上面的关于间断点的分类解答是正确的,其次在数学中一般情况下是不会考虑n→-∞的情况,只有当你在学习复变函数时要求解析展开时才会遇到要求n→-∞的情况.
在这道题里你关于“当|x|>1时 lim(n→+∞)[(1+x)/(1+x^2n)]=0,lim(n→-∞)[(1+x)/(1+x^2n)]=1+x”的论断是正确的,但是题目是默认n→+∞