f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:48:23

f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围
f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围
f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围

f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围f(x)=2x^2/(x+1) g(x)=asin(π/6*x)-2a+2 (a>0)若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围
f'(x)=[4x(x+1]-2x^2)/(x+1)^2
=2(x^2+2x)/(x+1)^2
=2(x+1)^2/(x+1)^2-2/(x+1)^2
=2-2/(x+1)^2
2-2/(x+1)^2=0
单调递增,所以f(x)∈[0,1]
x∈[0,1]时
g(x)∈[-2a+2,-3a/2+2] (a>0)
要想有解则:
-3a/2+2≥0
a≤4/3
-2a+2≤1
a≥1/2
则1/2≤a≤4/3
a范围为(1/2,4/3]

f(x)'>0 (x∈[0,1])单调递增,所以f(x)∈[0,1]
x∈[0,1]时g(x)∈[-2a+2,-a+2] (a>0)
要想有解则:-a+2>=0且-2a+2<=1解得1/2<=a<=2

过程我不再写了 。你也着急等。。。
最后是求 两个区间【0,1】和【-2a+2,(-3/2)a+2】有交集
求得满足条件的结果是【2/3,1】。。

f(x)求导后知道在0-1上是增函数,所以值域为0-1使g(x)有解即可,1<=a<= 2/3为空集

存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,
即当x∈[0,1]时,f(x) 和g(x)值域有交集。
f(x)=2x^2/(x+1) =[2(x+1)2-4(x+1)+2)]/(x+1)
= [ 2(x+1)+2/(x+1) ]-4
≥2√ 2...

全部展开

存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,
即当x∈[0,1]时,f(x) 和g(x)值域有交集。
f(x)=2x^2/(x+1) =[2(x+1)2-4(x+1)+2)]/(x+1)
= [ 2(x+1)+2/(x+1) ]-4
≥2√ 2(x+1)+2/(x+1) -4 (均值不等式,x=0取等号)
=0
g(x)=asin(π/6*x)-2a+2
-2a+2 ≤ g(x) ≤-3/2a +2
要使f(x) 和g(x)值域有交集,-3/2a +2≥0,即a≤4/3,由a>0
a范围为(0 4/3]

收起