定积分(x^3)/(1-x^2)^(1/2)dx 范围(0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:10:48

定积分(x^3)/(1-x^2)^(1/2)dx 范围(0,1)
定积分(x^3)/(1-x^2)^(1/2)dx 范围(0,1)

定积分(x^3)/(1-x^2)^(1/2)dx 范围(0,1)

.

令x=cost 积分限变为从0到pi/2
原式=∫sint^3/cost*costdt=∫sint^3dt=2/3

注意 1-x^2≠0 x≠±1
是广义积分
原式=lim(b→1)∫(0 b)x^3/(1-x^2)^(1/2)dx
=-lim(b→1)∫(0 b)x^2d(1-x^2)^(1/2)
=-lim(b→1)x^2(1-x^2)^(1/2)|(b 0)+lim(b→1)∫(0 b)(1-x^2)^(1/2)dx^2
=-3/2lim(b→1)(1-x^2)^(3/2)|(b 0)
=3/2

令x=sin t 则dx=cos t dt
原式=∫[0,π/2]sint^3/cost*costdt=∫[0,π/2]sint^3dt=2/3