已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1).求证:△BCE≌△DCF.(2)OG与BF有什么数量关系?证明你的结论.(3)若CE• GB=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:27:23

已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1).求证:△BCE≌△DCF.(2)OG与BF有什么数量关系?证明你的结论.(3)若CE• GB=
已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线
于点G,连接OG.(1).求证:△BCE≌△DCF.
(2)OG与BF有什么数量关系?证明你的结论.
(3)若CE• GB=4-2√2,求正方形ABCD的面积.

已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1).求证:△BCE≌△DCF.(2)OG与BF有什么数量关系?证明你的结论.(3)若CE• GB=
(1)△BCE≌△DCF,你的△BCF是条直线
(2),∠CDF=∠CBE=∠EBD,∠BEC=∠DFC.∠BEC=∠EBD+∠EDB=∠EDB+∠FDC=∠BDF,所以∠BDF=∠DFC=∠DFB,就可以证明△BDF是等腰三角形,所一线段BG是中线,根据中位线定理,OG=1/2*BF
(3)△DGE∽△BGD
DG²=GE*GB
△BCE≌△DCF
BE=DF
BG⊥DF
GE*BE=GE*DF=DE*CF=DE*CE
设BC=a,BF=BD=√2a,CE=(√2-1)a,DE=(2-√2)a
过G作GN⊥CD于N,则N为CD中点
△ENG∽EGD
GE²=EN*DE
DG^2=GE*GB=GE(GE+GB)=GE²+GE*GB=EN*DE+DE*CE=DE*CN=(2-√2)a*0.5a=4-2√2
所以a²=4
正方形ABCD的面积=a²/2=2

哥,图啊?给个图啊

(1)∵BC=DC,∠BCE=∠DCF=90°,CE=CF,
∴△BCE≌△DCF.
(2)OG= BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵B...

全部展开

(1)∵BC=DC,∠BCE=∠DCF=90°,CE=CF,
∴△BCE≌△DCF.
(2)OG= BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵BG=BG,∠DBG=∠FBG,
∴△BGD≌△BGF,
∴DG=GF,
∵DO=OB,
∴OG是△DBF的中位线,
∴OG= BF.
谁复制 谁没道德 没素质 诅咒你 帅哥美女 行行好

收起

图呢

(1)∵BC=DC,∠BCE=∠DCF=90°,CE=CF,
∴△BCE≌△DCF.
(2)OG= BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵B...

全部展开

(1)∵BC=DC,∠BCE=∠DCF=90°,CE=CF,
∴△BCE≌△DCF.
(2)OG= BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵BG=BG,∠DBG=∠FBG,
∴△BGD≌△BGF,
∴DG=GF,
∵DO=OB,
∴OG是△DBF的中位线,
∴OG= BF.
(3)设BC=x,则DC=x,BD=根号2x ,
由(2)知,△BGF≌△BGD,
∴BF=BD,
∴CF=(根号2 -1)x,
∵∠DGB=∠EGD,∠DBG=∠EDG,
∴△GDB∽△GED,∴ ge分之gd=gd分之gb ,
∴GD2=GE•GB=4-2 ,
∵DC2+CF2=(2GD)的平方,
∴x2+(根号2 -1)2x2=4(4-2根号2 )
(4-2根号2 )x2=4(4-2根号2 ),
x的平方=4
面积为4

收起

已知,如图,小明把两个大小一样的正方形重叠放置,点O是正方形ABCD的中心,他发现正方形A'B'C'D'绕点O无论怎样转动,两个正方形重叠部分的面积,用等于一个正方形面积的1/4,你知道这是为 如图,正方形ABCD和正方形OEFG的边长均为4,O是正方形ABCD的旋转对称中心,则图中阴影部分的面积 如图所示,已知正方形ABCD的中心为O,用纸片剪一个大小与正方形ABCD相等的正方形 图见如图所示,已知正方形ABCD的中心为O,用纸片剪一个大小与正方形ABCD相等的正方形EFGH,然后把正方形EFGH的顶 如图13(1),正方形ABCD的边长为a,其中点O是正方形ABCD的中心,求它们是怎样形成的 如图,已知正方形ABCD的边长为1,过正方形中心O 的直线MN分别交 正方形的边AB,CD于点M,N,则当 MN/BN取最小值时,CN= ▲ 如图,已知正方形ABCD的边长为1,过正方形中心O 的直线MN分别交 正方形的边AB,CD于点M,N,则当 MN/BN取最小值时,CN= ▲ . 如图,已知圆O过正方形ABCD顶点A、B,且与CD相切,若正方形边长为2,则圆的半径为 如图,两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心如图①是两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心,此时两个正方形重叠部分的面积是正方形面积的 如图已知正方形OEFG的顶点O放在正方形ABCD的中心O处,若正方形OEFG绕O点旋转.(1)探索:在旋转的过程中线段BE与线段CG有什么关系?(2)若正方形ABCD的边长为a,探索:在旋转过程中四边形OMCN的面积 (过程)如图,已知正方形ABCD的边长为4,直线l是正方形的对称轴如图,已知正方形ABCD的边长为4,直线l是正方形的对称轴,圆O的圆心在直线l上,将圆O沿着直线l向右平移,当圆O经过A、B时,圆O的周长恰 边长为a的正方形ABCD中,O为正方形的中心,PO⊥平面ABCD于O,PO=b,则P到正方形个顶点边长为a的正方形ABCD中,O为正方形的中心,PO⊥平面ABCD于O,PO=b,则P到正方形各顶点距离为?P到正方形各边的距离为? 如图,圆心O恰好为正方形ABCD的中心,已知AB=4,⊙O的直径为1,现将⊙O沿某一方向平移,当它与正方形ABCD的某条边相切时停止平移,记平移的距离为d,则d的取值范围是 ——我知道答案,3/2我能算出来, 有两个边长都为A的正方形ABCD和OPQS,正方形OPQS的顶点O是正方形ABCD的中心,完成:(1)试判断AP和BS的大小关系,并说明理由.(2)若两个正方形的边长分别为a、b(a<b),如图(2),其他条件不 如图,已知四边形ABCD和点O为位视中心,作出四边形ABCD的位视图形,把四边形ABCD放大为原来的2倍. 如图,正方形ABCD和正方形A1B1C1D1的对角线BD,B1D1都在X轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1D的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点,OD=3,O1D1=2(1)如果O1 已知:如图,MN是圆O的直径,四边形ABCD、CEFG是正方形,A、D、F在圆O上,B、C、G在直线MN上,S正方形CEFG=4,则圆O的半径为? 已知 如图 o为正方形abcd的中心 be平分∠dbc,交dc于点e,延长bc到点f,使cf=ce,连结如图,已知O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.若DG^2=4-2√ 如图,O是边长为a的正方形ABCD的中心,将一块腰长足够长的等腰直角三角形1