已知A.B是双曲线X^2-y^2=2右支上不同的两点,O为坐标原点,则向量OA*向量OB的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:02:37
已知A.B是双曲线X^2-y^2=2右支上不同的两点,O为坐标原点,则向量OA*向量OB的最小值
已知A.B是双曲线X^2-y^2=2右支上不同的两点,O为坐标原点,则向量OA*向量OB的最小值
已知A.B是双曲线X^2-y^2=2右支上不同的两点,O为坐标原点,则向量OA*向量OB的最小值
设A(x1,y1)
B(x2,y2)
x1>0,x2>0
且x1x2≥2
向量OA*向量OB
=x1x2+y1y2
≥x1x2-√(x1²-2)*√(x2²-2)
=x1x2-√[(x1x2)²-2(x1²+x2²)+4]
≥x1x2-√[(x1x2)²-4x1x2+4]
=x1x2-√(x1x2-2)²
=x1x2-|x1x2-2|
=x1x2-(x1x2-2)
=2
所以向量OA*向量OB的最小值是2
已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支只有一个交点已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支
A,B是双曲线X方-Y方=2右支不同两点,O是原点,求向量OA×向量OB的最小值是多少
已知双曲线的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),过左焦点F1作斜率为√3/3的直线交双曲线的右支于已知双曲线的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),过左焦点F1作斜率为√3/3的直线交双曲线的右支于点P,且y轴
已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过x轴正半轴且倾斜角60度的直线与双曲线的右支只有一已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支只
F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程
双曲线x^2/a^2-y^2/b^2=1斜率为60度的直线过双曲线右焦点与双曲线右支相交于一点,求离心率的范围
F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且PF1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程为4x±3y=0
已知双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的右焦点为F,若过点F且倾斜角60度的直线与双曲线的右支只有一个交点.为什么:要使过点F且倾斜角为60度的直线与双曲线的右支只有一个交点则需渐近线y=(b/a)x
P是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右支一点,F1,F2分别为双曲线左右焦点,焦距P是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右支一点,F1,F2分别为双曲线左右焦点,焦距为2C,则PF1F2的内切圆的横坐标是多少
已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为
已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左顶点为A,右焦点为F,过点F作垂直于x轴的直线与双曲线交于B,C两点,且AF=3,BC=6.(1)求双曲线的方程(2)过F的直线l交双曲线左支D点,右支E点,P为DE的中点,若以
一道关于双曲线的数学题过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F作双曲线在第二、四象限的渐近线的垂线l,垂足为P,l与双曲线的左、右支的交点分别为A,B.5 [ 标签:双曲线,焦点双曲线,渐
已知直线l:y=ax+1与双曲线c:3x^2-y^2=1的右支相交于A、B两点,求a的取值范围!
已知直线y=kx+2和双曲线9x方-4y方,求直线与双曲线右支只有一个交点,k的取值范围
已知直线y=kx+2和双曲线9x方-4y方,求直线与双曲线右支只有一个交点,k的取值范围
已知F1,F2是双曲线L:x^2/a^2-y^2/b^2=1(a>0,b>0)的左,右焦点,过点F1斜率为2的直线l交双曲线L的左支于点P,若直线PF2垂直直线l,则a/b为
已知双曲线C:x^2/a^2-y^2/b^2=1(a大于0,b大于0),B是右顶点,F是右焦点,点A在x轴的正半轴上,且满足|OA
已知双曲线A的平方分之X的平方减去B的平方分之Y的平方等于1的右焦点为F,右顶点是A,虚轴的上端点是B向量AB乘向量AF等于6减4倍根号3,角BAF等于150,1求双曲线方程,2诺过点F的直线L与双曲线右支