f(x)=5√3cos²x+√3sin²x-4sinxcosx(π/4≤x≤7π/24)的最小值,并求其单调区间 啊··

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:46:44

f(x)=5√3cos²x+√3sin²x-4sinxcosx(π/4≤x≤7π/24)的最小值,并求其单调区间 啊··
f(x)=5√3cos²x+√3sin²x-4sinxcosx(π/4≤x≤7π/24)的最小值,并求其单调区间 啊··

f(x)=5√3cos²x+√3sin²x-4sinxcosx(π/4≤x≤7π/24)的最小值,并求其单调区间 啊··
f(x)=5√3cos²x+√3sin²x-4sinxcosx
=4√3cos²x+√3-4sinxcosx
=2√3(2cos²x-1)+3√3-2*2sinxcosx
=2√3cos2x-2sin2x+3√3
=4(√3/2*cos2x-1/2*sin2x)+3√3
=4(cos2x*cosπ/6-sin2x*sinπ/6)+3√3
=4cos(2x+π/6)+3√3.
因为π/4≤x≤7π/24,
所以2π/3≤2x+π/6≤3π/4,
-√2/2

自己算

(x)=5√3cos²x+√3sin²x-4sinxcosx
=4√3cos²x+√3-4sinxcosx
=2√3(2cos²x-1)+3√3-2*2sinxcosx
=2√3cos2x-2sin2x+3√3
=4(√3/2*cos2x-1/2*sin2x)+3√3
=4(co...

全部展开

(x)=5√3cos²x+√3sin²x-4sinxcosx
=4√3cos²x+√3-4sinxcosx
=2√3(2cos²x-1)+3√3-2*2sinxcosx
=2√3cos2x-2sin2x+3√3
=4(√3/2*cos2x-1/2*sin2x)+3√3
=4(cos2x*cosπ/6-sin2x*sinπ/6)+3√3
=4cos(2x+π/6)+3√3.
因为π/4≤x≤7π/24,
所以2π/3≤2x+π/6≤3π/4,
-√2/2<=cos(2x+π/6)<=-1/2,
故f(x)的最小值: 3√3-2√2。
由2kπ<=2x+π/6<=2kπ+π,得:
kπ-π/12<=x<=kπ+5π/12,
所以f(x)在[kπ-π/12,kπ+5π/12]单调递减;(k为整数)
由2kπ-π<=2x+π/6<=2kπ,得:
kπ-7π/12<=x<=kπ-π/12,
所以f(x)在[kπ-7π/12,kπ-π/12]单调递增。(k为整数)

收起