如图,在等腰梯形ABCD中,CD//AB,对角线AC、BD相交于O,∠ACD=60°,点S、P、Q分别为OD、OA、BC的中点求△PQS是等边三角形!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:55:38
如图,在等腰梯形ABCD中,CD//AB,对角线AC、BD相交于O,∠ACD=60°,点S、P、Q分别为OD、OA、BC的中点求△PQS是等边三角形!
如图,在等腰梯形ABCD中,CD//AB,对角线AC、BD相交于O,∠ACD=60°,点S、P、Q分别为OD、OA、BC的中点
求△PQS是等边三角形!
如图,在等腰梯形ABCD中,CD//AB,对角线AC、BD相交于O,∠ACD=60°,点S、P、Q分别为OD、OA、BC的中点求△PQS是等边三角形!
证明:连接CS、BP;
因为等腰梯形ABCD,CD//AB,
所以OC=OD,OA=OB;
又因为∠ACD=60°,
所以三角形COD、AOB为等边三角形.
在等边三角形COD、AOB中,因为S、P分别为OD、OA中点,
所以CS垂直于BD,BP垂直于AC;
在直角三角形CSB中,因为Q是BC中点,
所以QS=1/2BC=1/AD;
又在直角三角形BCP中,因为Q是BC中点,
所以QP=1/2BC=1/AD;
所以QS=QP=1/2AD;
又因在三角形AOD中,P、S分别为OA、OD的中点,
所以PS=1/2AD;
所以QS=QP=PS
即△PQS是等边三角形!
证明:连接CS、BP;
因为等腰梯形ABCD,CD//AB,
所以OC=OD,OA=OB;
又因为∠ACD=60°,
所以三角形COD、AOB为等边三角形。
在等边三角形COD、AOB中,因为S、P分别为OD、OA中点,
所以CS垂直于BD,BP垂直于AC;
在直角三角形CSB中,因为Q是BC中点,
所以QS=1/2B...
全部展开
证明:连接CS、BP;
因为等腰梯形ABCD,CD//AB,
所以OC=OD,OA=OB;
又因为∠ACD=60°,
所以三角形COD、AOB为等边三角形。
在等边三角形COD、AOB中,因为S、P分别为OD、OA中点,
所以CS垂直于BD,BP垂直于AC;
在直角三角形CSB中,因为Q是BC中点,
所以QS=1/2BC=1/AD;
又在直角三角形BCP中,因为Q是BC中点,
所以QP=1/2BC=1/AD;
所以QS=QP=1/2AD;
又因在三角形AOD中,P、S分别为OA、OD的中点,
所以PS=1/2AD;
所以QS=QP=PS
即△PQS是等边三角形
筱尕 祝你学习进步!o(∩_∩)o...
收起