如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P若圆的半径为5,AF=15/2 求tan∠ABF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:38:40
如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P若圆的半径为5,AF=15/2 求tan∠ABF
如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P
若圆的半径为5,AF=15/2 求tan∠ABF
如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P若圆的半径为5,AF=15/2 求tan∠ABF
连AD
∠CAD=∠CBD=∠ABD
∠ADB=90
所以有
三角形ABD相似于三角形AFD
AB/AF=AD/DF=10/7.5 = 4/3
tan∠ABF = tan∠FAD = 3/4
:①∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA;
②
∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,...
全部展开
:①∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA;
②
∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,
即:P是AF的中点;
收起
如图,若圆的半径为5,AF=15/2,tan∠ABF=3/4,见③详解。 ①∵BD平分∠CBA, ∴∠CBD=∠DBA, ∵∠DAC与∠CBD都是弧CD所对的圆周角, ∴∠DAC=∠CBD, ∴∠DAC=∠DBA; ② ∵AB为直径, ∴∠ADB=90°, ∵DE⊥AB于E, ∴∠DEB=90°, ∴∠ADE+∠EDB=∠ABD+∠EDB=90°, ∴∠ADE=∠ABD=∠DAP, ∴PD=PA, ∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°, ∴∠PDF=∠PFD, ∴PD=PF, ∴PA=PF, 即:P是AF的中点; ③ 由①②可知,在直角三角形AFD和直角三角形ABD中 ∠DAF=∠DBA,∠DFA=∠DAB ∴△AFD≌△ABD ∴DF/AD=AF/AB=(15/2)/10=3/4 ∴tan∠ABF=tan∠DAF=DF/AD=3/4