求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积.(用定积分求旋转体的体积)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:28:56
求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积.(用定积分求旋转体的体积)
求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积.(用定积分求旋转体的体积)
求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积.(用定积分求旋转体的体积)
解法一:所求体积=2∫2πx√[16-(x-5)²]dx
=4π∫x√[16-(x-5)²]dx
=4π∫(4sint+5)*4cost*4costdt (令x=4sint+5)
=64π∫(4sint+5)cos²tdt
=640π∫cos²tdt
=320π∫[1+cos(2t)]dt
=320π[t+sin(2t)/2]│
=320π(π/2+0)
=160π²;
解法二:所求体积=2∫π[(5+√(16-y²))²-(5-√(16-y²))²]dy
=40π∫√(16-y²)dy
=40π∫4cost*4costdt (令y=4sint)
=320π∫[1+cos(2t)]dt
=320π[t+sin(2t)/2]│
=320π(π/2+0)
=160π².
答:
x=5±√(16-y^2)
且关于x轴对称,所以V
=2π∫0到4 [(5+√(16-y^2))^2-(5-√(16-y^2))^2] dy
=2π∫0到4 20√(16-y^2) dy
=40π∫0到4 √(16-y^2) dy
令y=4sint,则t积分区域为0到π/2
则40π∫√(16-y^2) dy
=40π*16∫(...
全部展开
答:
x=5±√(16-y^2)
且关于x轴对称,所以V
=2π∫0到4 [(5+√(16-y^2))^2-(5-√(16-y^2))^2] dy
=2π∫0到4 20√(16-y^2) dy
=40π∫0到4 √(16-y^2) dy
令y=4sint,则t积分区域为0到π/2
则40π∫√(16-y^2) dy
=40π*16∫(cost)^2 dt
=40π*16(t/2+sin2t/4)|0到π/2
=160π^2
收起