在梯形ABCD中,AD平行BC,E是BC的中点,AD=5,BC=12,CD=4倍根号2,∠C=45°,点P是BC边上一懂点,设PB的长为X. 问1,当X等于几时候,以点P.A.D.E为顶点的四边形为直角三角形(有两个答案)2. 点P在BC边上的运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:22:56

在梯形ABCD中,AD平行BC,E是BC的中点,AD=5,BC=12,CD=4倍根号2,∠C=45°,点P是BC边上一懂点,设PB的长为X. 问1,当X等于几时候,以点P.A.D.E为顶点的四边形为直角三角形(有两个答案)2. 点P在BC边上的运动
在梯形ABCD中,AD平行BC,E是BC的中点,AD=5,BC=12,CD=4倍根号2,∠C=45°,点P是BC边上一懂点,设PB的长为X. 问1,当X等于几时候,以点P.A.D.E为顶点的四边形为直角三角形(有两个答案)2. 点P在BC边上的运动过程中,以点P.A.D.E为顶点的四边形能否为菱形,说清楚理由(过程.)
回答出来了在追加200分!

在梯形ABCD中,AD平行BC,E是BC的中点,AD=5,BC=12,CD=4倍根号2,∠C=45°,点P是BC边上一懂点,设PB的长为X. 问1,当X等于几时候,以点P.A.D.E为顶点的四边形为直角三角形(有两个答案)2. 点P在BC边上的运动
1.3或8
2.由2知,当BP=11时,以点P,A,D,E为顶点的四边形是平行四边形,所以EP=AD=5.
过D作DF垂直BC于F,则DF=FC=4,所以FP=3
所以DP=√FP^2+DF^2=√3^2+4^2=5
所以EP=DP,故此时平行四边形PDAE是菱形.
故此时以P,A,D,E为顶点的四边形能构成菱形 .

(1)如图,分别过A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD= 4根号2,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若点P、A、D、E为顶点的四边形为直角梯形,
则∠APC=90°或∠DEB=90°,
当∠APC=90°时,
∴P与M重合,
∴BP=BM=3...

全部展开

(1)如图,分别过A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD= 4根号2,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若点P、A、D、E为顶点的四边形为直角梯形,
则∠APC=90°或∠DEB=90°,
当∠APC=90°时,
∴P与M重合,
∴BP=BM=3;
当∠DEB=90°时,
∴P与N重合,
∴BP=BN=8;
故当x的值为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;
(2)若以点P、A、D、E为顶点的四边形为平行四边形,那么AD=PE,有两种情况:
①当P在E的左边,
∵E是BC的中点,
∴BE=6,
∴BP=BE-PE=6-5=1;
②当P在E的右边,
BP=BE+PE=6+5=11;
故当x的值为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;
(3)由(2)知,当BP=11时,以点P、A、D、E为顶点的四边形是平行四边形
∴EP=AD=5,
过D作DN⊥BC于N,
∵CD=4根号2 ,∠C=45°,
则DN=CN=4,
∴NP=3.
∴DP=根号DN²+NP² =根号4²+3² =5,
∴EP=DP,
故此时▱PDAE是菱形.
即以点P、A、D、E为顶点的四边形能构成菱形.

收起

(1)如图,分别过A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD=4 2 ,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若点P、A、D、E为顶点的四边形为直角梯形,
则∠APC=90°或∠DEB=90°,
当∠APC=90°时,
∴P与M重合,
∴BP=BM=3;...

全部展开

(1)如图,分别过A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD=4 2 ,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若点P、A、D、E为顶点的四边形为直角梯形,
则∠APC=90°或∠DEB=90°,
当∠APC=90°时,
∴P与M重合,
∴BP=BM=3;
当∠DEB=90°时,
∴P与N重合,
∴BP=BN=8;
故当x的值为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;
(2)若以点P、A、D、E为顶点的四边形为平行四边形,那么AD=PE,有两种情况:
①当P在E的左边,
∵E是BC的中点,
∴BE=6,
∴BP=BE-PE=6-5=1;
②当P在E的右边,
BP=BE+PE=6+5=11;
故当x的值为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;
(3)由(2)知,当BP′=11时,以点P、A、D、E为顶点的四边形是平行四边形
∴EP=AD=5,
过D作DN⊥BC于N,
∵CD=4 2 ,∠C=45°,
则DN=CN=4,
∴NP′=BP′-BN=BP′-(BC-CN)=11-12+4=3.
∴DP′= DN2+NP2 = 42+32 =5,
∴EP′=DP′,
故此时▱P′DAE是菱形.
即以点P、A、D、E为顶点的四边形能构成菱形.

收起

"以点P.A.D.E为顶点的四边形为直角三角形"
这个说法真好笑,四边形为三形?这是不可能的。
第二问,不知楼上看清楚没?
过D作DF垂直BC于F
则求出DF=4
DE=6-4=2
则DE=2根号5
AD=5
AD不等于DE,这个四边形是不可能成为菱形的。

1,如图,
当AP⊥BC时有∠DAP为直角,符合题意,易求BP=3
当AP⊥DE时也符合题意,求得CM=DM=4 EM=2
DE=2√5.∠ADE=∠DEM→EM/DE=OD/DA=1∶√5→DO=√5 所以OE=√5=DO→AD=EP=5→BP=BE+EP=6+5=11
2,当P在B E之间时,由于边AD≠DE,因此不可能形成菱形;
当P在...

全部展开

1,如图,
当AP⊥BC时有∠DAP为直角,符合题意,易求BP=3
当AP⊥DE时也符合题意,求得CM=DM=4 EM=2
DE=2√5.∠ADE=∠DEM→EM/DE=OD/DA=1∶√5→DO=√5 所以OE=√5=DO→AD=EP=5→BP=BE+EP=6+5=11
2,当P在B E之间时,由于边AD≠DE,因此不可能形成菱形;
当P在E点右侧时,易求AE=5=AD,且AD//EP,只需PE=AD=5即可。则BP=11,即当AP⊥DE时。

收起

在梯形ABCD中,AD平行BC,AD小于BC,E,F分别是AD,BC的中点,而且EF垂直于BC,那么ABCD是等腰梯形如图,在梯形ABCD中,AD平行BC,AD小于BC,E,F分别是AD,BC的中点,而且EF垂直于BC,那么,梯形ABCD是等腰梯形吗? 在梯形ABCD中,AD平行BC,AD+BC=CD,E是AB的中点,则角CED=[ ] 如图,在梯形ABCD中AD平行BC,AD 已知在梯形ABCD中,AD平行于BC,AD 在等腰梯形ABCD中,AD平行BC,AB=BC,E,F,G,H分别为AD,BE,BC,CE的中点,求证四边形EFGH是菱形 在直角梯形ABCD中 AD平行于BC AB垂直于BC E是CD中点 AB=AD+BC 则△ABE为什么三角形 在梯形abcd中 ad平行bc 点e,f分别在ab,cd上,ef平行于bc 已知:在梯形ABCD中,AB平行于CD,E是BC的中点,EF垂直于AD于F,求证:梯形ABCD的面积=AD*EF 在梯形ABCD中,AB平行CD,点E是BC的中点,EF垂直AD于点F,求证:S梯形ABCD=AD*EF 在梯形ABCD中,AD平行BC,AB=AD+BC,E为CD的中点.求证:AE⊥BE 如图,在梯形ABCD中,AD平行于BC,E是CD.的中点,求证 EA等于EB 梯形ABCD中,AD平行BC,E是AB的中点,DE垂直CE.求证AD+BC=DC 如图在梯形abcd中ad平行bc 在梯形ABCD中,AD平行BC,E是AB的中点,且EF平行BC,则DF和FC有什么关系?为什么? 已知,如图,在梯形ABCD中AD平行BC,AD+BC=AB.E是CD的中点,求证:AE垂直BE 在梯形ABCD中,AD平行BC,点E是DC边上的中点,且AB=BC+AD.试证明BE垂直AE 在直角梯形ABCD中,∠ABC=90°,AD平行BC,AB=BC,E是AB的中点,CE⊥BD.求证:BE=AD. 在直角梯形ABCD中,∠ABC=90°,AD平行BC,AB=BC,E是AB中点,CE垂直BD.求证:BE=AD