在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,垂足为D,BE⊥MN,垂足为E.(1)如图①,求证:DE=AD+BE(2)保持上述条件不变,若直线MN绕点C进行旋转,使MN经过△ABC的内部,则DE、AD、BE、具有怎样的等量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:29:40

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,垂足为D,BE⊥MN,垂足为E.(1)如图①,求证:DE=AD+BE(2)保持上述条件不变,若直线MN绕点C进行旋转,使MN经过△ABC的内部,则DE、AD、BE、具有怎样的等量
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,垂足为D,BE⊥MN,垂足为E.
(1)如图①,求证:DE=AD+BE
(2)保持上述条件不变,若直线MN绕点C进行旋转,使MN经过△ABC的内部,则DE、AD、BE、具有怎样的等量关系?(图②、图③)

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,垂足为D,BE⊥MN,垂足为E.(1)如图①,求证:DE=AD+BE(2)保持上述条件不变,若直线MN绕点C进行旋转,使MN经过△ABC的内部,则DE、AD、BE、具有怎样的等量
证明 :
1)
∠ACB=90
∠CAB+∠CBA=90
AD,BE垂直MN
所以,AD//BE
∠DAC+∠CAB=90=∠CBA+∠CBE
∠DAC=∠ECB;∠ACD=∠CBE
AC=BC
三角形ACD与三角形CBE全等
CD=BE;CE=AD
DE=DC+DE=AD+BE
2)
∠BCE+∠ACD=90=∠BCE+∠CBE
∠CBE=∠ACD
同理:∠CAD=∠BCE
AC=BC
三角形ACD与三角形CBE全等
CE=AD;BE=CD
CE/BE=AD/CD
(CD-DE)/BE=AD/BE=(BE-DE)/BE=AD/BE
BE-DE=AD
DE=BE-AD

图阿~
你这样说没人会做的~~

(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.
(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-B...

全部展开

(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.
(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.
(3)DE、AD、BE具有的等量关系为:DE=BE-AD.证明的方法与(2)相同.(1)证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在Rt△ADC和Rt△CEB中,,
∴Rt△ADC≌Rt△CEB,
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;
(2)证明:在△ADC和△CEB中,,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;
(3)DE=BE-AD.证明的方法与(2)相同.

收起

在△ABC中,∠A=2∠B,AB=2AC.求证:∠ACB=90° 在RT△ABC中,∠ACB=90°,AC △ABC中,∠ACB=2∠B,BC=2AC,求证:∠A=90° 如图,在△ABC中,∠A=2∠B,AB=2AC,求证:∠ACB=90°感激不尽 在Rt△ABC中,∠ACB=90°,BC=a,AC=b,CD⊥AB于D,则BD:AD等于 Rt△ABC中,∠ACB=90°,AC=b,BC=a 在三角形内接正方形只做第二问 在△ABC中,∠ACB=2∠ABC 求证2AC>AB 在三棱柱ABC-A'B'C'中AA′⊥平面ABC,∠ACB=90°,AC=6,BC=CC′=根号2, 在△ABC中,∠ACB=90°,AC=AE 、BC=BF,则∠ECF= 在RT△ABC中,∠ACB=90°,AD=AC,BE=BC,则∠ECD= 在△ABC中,∠ACB=90°,AC=AE,BC=BF,求∠ECF的度数 在三角形ABC中,角ACB=2角B,BC=2AC求证角A等于90° 已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,BD=6,求BC、CD、AC、AD的长.用勾股定理做,快已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,BD=6,求BC、CD、AC、AD的长.用勾股定理做,快的话有加分. 在△ABC中,∠A=72°,∠B=36°,CD平分∠ACB,DE‖AC,请写出图中所有等腰三角形________ 如图,在△ABC和△CDB中,∠ACB=∠CBD=90°,AC=a,BC=b.当BD与a,b之间满足怎样的关系式时,△ABC∽△CDB? 在△ABC和△CDB中,∠ACB=∠CBD=90°,AC=a,BC=b.当BD与a、b之间满足怎样的关系式时,△ABC∽CDB 为什么? 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于 如图:已知在△ABC 中,∠ACB=90°AC=BC,BD平分∠ABC 求证:AB=BC+CD.如图:已知在△ABC 中,∠ACB=90°AC=BC,BD平分∠ABC 求证:AB=BCBEC D ABC垂直于AC于C,DE垂直于AB于点E