已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是A.偶函数且它的图像关于点(π,0)对称B.偶函数且它的图像关于点(3π/2,0)对称C.奇函数且它的图像关于点(3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:51:42

已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是A.偶函数且它的图像关于点(π,0)对称B.偶函数且它的图像关于点(3π/2,0)对称C.奇函数且它的图像关于点(3
已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是
A.偶函数且它的图像关于点(π,0)对称
B.偶函数且它的图像关于点(3π/2,0)对称
C.奇函数且它的图像关于点(3π/2,0)对称
D.奇函数且它的图像关于点(π,0)对称
将已知函数变形f(x)=根号(a^2+b^2)sin(x-φ)
其中tanφ=b/a
又f(x)=asinx-bcosx在x=π/4处取得最小值
所以π/4-φ=3π/2 得φ=-5π/4
所以y=f(3π/4-x)=-sinx
选D
①为什么tanφ=b/a
②为什么“其中tanφ=b/a”则“f(x)=asinx-bcosx在x=π/4处取得最小值”
在此谢过

已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)是A.偶函数且它的图像关于点(π,0)对称B.偶函数且它的图像关于点(3π/2,0)对称C.奇函数且它的图像关于点(3
问题1‘tanφ=b/a是一个定理,推理可找相关资料书.高一下应该有.
问题2’ 因为f(x)=asinx-bcos所以它的倒是f(x)=asinx+acosx又因为在x=π/4处取得最小值 所以f(π/4)=0所以a+b=0所以f(x)=asinx+acosx则函数y=f(3π/4-x)=根号二倍乘以a再乘以sin(π-x) 所以选D

已知函数f(x)=asinx+bcosx,求f(x)最大、最小值 已知函数f(x)=asinx+bcosx,求f(x)最大、最小值 已知函数f(x)=asinx+bcosx,且f(∏/3)=1,求函数f(x)的最小值k的取值范围 f(x)=(asinx+bcosx)*e^(-x)在x=π/6处有极值,则函数y=asinx+bcosx的图象可能是 已知函数f(x)=asinx+bcosx,若f(∏/4)=√2,且f(x)最大值是√10,求函数y=asinx+b的最小值(请写过程) f(x)=asinx+bcosx的几何意义 已知函数f(x)=asinx-bcosx的图象的一条对称轴是x=3.1415926/4,则直线ax-by c=0的倾斜角是( ) 已知函数f(x)=2asin^x-2根号3asinx*cosx+b的定义域为[0,π/2],值域为[-5,4]则函数g(x)=asinx+2bcosx,x∈R的最大值是? 已知函数f(x)=asinx+bcosx的图像经过点(pai/6,0),(pai/3,1).求实数a、b的值 已知f(x)=asinx=bcosx+1,满足f(5)=7,则f(-5)=? 求解:已知x=π/4是f(x)=asinx+bcosx一条对称轴,且最大值为2√2,则函数g(x)=asinx+b为多少?非常感谢! 已知函数f(x)=asinx+bcosx (a>0),f(π/4)=根号2,且f(x)的最小值为-根号10 求a.b 和函数解析式 已知函数f(x)=asinx+bcosx,且f(派/3)=1,则对任意实数a,b,函数f(x)的最大值的取值范围是 已知函数f(x)=asinx+bcosx(a>0),f(4分之π)=根号2,且f(x)的最小值是负根号10,求a,b的值及函数的解析式 已知实数a,b满足a^2+b^2-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值为怎么理解几何意义啊还有就是f(x)=asinx+bcosx +1 =√(a²+b²)sin(x+p) +1是怎么得出来的 已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4-x)已知函数f(x)=asinx-bcosx(a.b常数,a不等于0,x属于R)在x=pai/4处取得最小值,则函数y=f(3pai/4 -x)是( ) A.偶函数且它 已知函数f(x)=asinx-bcosx的图像关于直线x=π/4对称,则判断函数f(3/4π-x)的奇偶性和对称中心 已知函数f(x)=asinx+bcosx的图象经过点(π/3,0)和(π/2,1).(1)求函数a和b的值;(2)当x为何值时,f(x)取得最大值?