已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为二分之根号二(O为坐标原点),求m,n的值用 点差法 详细讲解原理原因.答案是n=根号2/3 m=1/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:36:51

已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为二分之根号二(O为坐标原点),求m,n的值用 点差法 详细讲解原理原因.答案是n=根号2/3 m=1/3
已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为二分之根号二(O为坐标原点),求m,n的值
用 点差法 详细讲解原理原因.答案是n=根号2/3 m=1/3

已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为二分之根号二(O为坐标原点),求m,n的值用 点差法 详细讲解原理原因.答案是n=根号2/3 m=1/3
设椭圆mx^2+ny^2=1与直线x+y-1=0交于A(x1,y1),B(x2,y2)两点
A,B点在椭圆上:
mx1^2+ny1^2=1
mx2^2+ny2^2=1
两式相减:m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0
=> -n(y1-y2)/[m(x1-x2)]=(x1+x2)/(y1+y2)
A,B也在直线上,所以:(y1-y2)/(x1-x2)=直线斜率=-1
=> n/m=(x1+x2)/(y1+y2)
令A,B的中点为(x0,y0)=> x0=(x1+x2)/2 ; y0=(y1+y2)/2
=> n/m=x0/y0 = (x0-0)/(y0-0)中点到原点直线的斜率的倒数
=> n/m = √2

不懂

分给别人吧

焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)   2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (b>a>0)   其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称 F点在Y轴
轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(...

全部展开

焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)   2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (b>a>0)   其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称 F点在Y轴
轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。   又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即标准方程的统一形式。   椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ   标准形式的椭圆在(x0,y0)点的切线就是 : xx0/a^2+yy0/b^2=1
编辑本段lk一般方程
  Ax^2;+Bxy+Cy^2;+Dx+Ey+F=0 (A.C不为0)

收起

已在百度Hi中做出详细解答,望采纳O(∩_∩)O~~
设A(x1,x2),B(x1,x2),M[(x1+x2)/2,(y1+y2)/2]
椭圆方程与直线联立得:(m+n)x²-2nx+n-1=0
x1+x2=2n/(m+n),
...

全部展开

已在百度Hi中做出详细解答,望采纳O(∩_∩)O~~
设A(x1,x2),B(x1,x2),M[(x1+x2)/2,(y1+y2)/2]
椭圆方程与直线联立得:(m+n)x²-2nx+n-1=0
x1+x2=2n/(m+n),
x1x2=(n-1)/(m-n)
AB=√(1+k²)×(√Δ)/a
AB=2√2×√(m+n-mn)/(m+n)=2√2,得:m²+n²-m-n+3mn=0
OM的斜率为二分之根号二,Mn/(m+n),m/(m+n)
n=√2×m
代入m²+n²-m-n+3mn=0 得:m=1/3或0(舍去)
n=√2/3

收起

已知直线y=x+1与椭圆mx^2+ny^2=1(m>n>0)相交于A,B两点,若弦AB的中点的横坐标为-1/3,则双曲线x^2/m^2-y^ 若直线mx-ny=4与圆:x^2+y^2=4没有交点,则过点P(m,n)的直线与椭圆x^2/9+y^2/4-1的交点个数是 若直线mx+ny=4与圆x^2+y^2=4没有交点,则过点P(m,n)的直线与椭圆x^2/9+y^2/4=1的交点个数是若直线mx+ny=4与圆O:x^2 + y^2 = 4没有交点,则过点P(m,n)的直线与椭圆x^2 /9 + y^2 /4 = 1 (九分之X平方加四分之Y 椭圆mx^2+ny^2=1与直线x+y=3相交于A、B两点,C是AB中点,若|AB|=2√2,OC的斜率为2(O为原点),试确定椭圆 若椭圆mx^2+ny^2=1与直线x+y-1=0交于A,B两点,过原点与线段AB中点的直线斜率为√2/2,求n/m的值 若椭圆mX^2+nY^2=1与直线X+Y+1=0交于A,B两点,过原点与线段AB中点的直线的斜率为2分之根号2,则n/m为多少? 1.已知椭圆的中心为坐标原点0,焦点在X轴上,斜率为t且过椭圆右焦点P2的直线交椭圆于A,B两点.向量OA+向量OB于向量a+(3.-3)共线.求椭圆离心率2.若椭圆mx^2+ny^2=1与直线x+y=0,交于A,B两点.过原 已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到焦点F的最大距离为8问:已知圆O:x^2+y^2=1,直线l:mx+ny=1.求证:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O 已知椭圆的方程为x^2+3y^2=3,圆的方程x^2+y^2=1,M(m,n)为椭圆上的点,直线mx+ny=1与圆x^2+y^2=1交于A,B两点.求证|AB|=2√1-1/(m^2+n^2) 已知椭圆c,x^2/a^2 + y^2/b^2 =1 (a>b>0)经过P(1,√2/2),且两焦点与短轴的一个端点构成等腰直角三角形动直线l:mx+ny+1/3n=0 ,交椭圆与AB两点,求证:以AB为直径的动圆,恒经过(0,1) 已知椭圆C的两焦点为F1(-1,0),F2(1,0),并且经过点M(1,3/2).(1)求椭圆C的方程; (2)已知圆O:x^2+y^2=1,直线l:mx+ny=1,证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交;并求直线l被圆O所截得的弦长的取 已知直线l:mx+ny=1与椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)交与P,R两点 1.求证:a^2·m^2+b^2·n^2>1 2.若O为已知直线l:mx+ny=1与椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)交与P,R两点1.求证:a^2·m^2+b^2·n^2>12.若O为坐标原点,OP垂 已知直线y=x+1椭圆mx^2+ny^2=1(m>n>0相交于A.B两点,若弦AB的中点的……已知直线y=x+1椭圆mx^2+ny^2=1(m>n>0相交于A.B两点,若弦AB的中点的横坐标等于-1/3,则双曲线x^/m^-y^/n^=1的两条渐近线的夹角的正切值 椭圆mx^2+ny^2=1(m>0,n>0且m≠n)与直线y=x+1交于A,B两点,求证当OA⊥OB时,m+n=2 在平面直角坐标系X0Y中,已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=(根号2)/3,且椭圆C上的点到Q(0,2)的距离的最大值为3(1)求椭圆C的方程(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:X^2+ 在平面直角坐标系X0Y中,已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=根号(2/3),且椭圆C上的点到Q(0,2)的距离的最大值为31)求椭圆C的方程(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:X^2+ 已知椭圆C:mx^2+ny^2=1(m>0,n>0),直线l:x+y-1=0(1)若m∈(0,1),求证直线l与椭圆C相交于不同两点 我是两直线联立,得到有n和m和x的方程,然后算△=4n^2-4(m+n)(n-1)>0,但是有n,怎么算?后面算不下去了. 直线与椭圆的关系若斜率为1直线l与椭圆x^2/4+y^2=1相交于A B亮点,求AB的中点的轨迹方程.椭圆mx^2+ny^2=1与直线x+y-1=0相交于A B亮点,C是A B 的中点,若AB=2√ 2,直线OC的斜率为√ 2/2,求椭圆的方程.别解