矩形纸片ABCD中,AB=4,AD=3,将纸片折叠,使点B落在边CD上的B'处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B相等,则此相等距离为?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:51:19
矩形纸片ABCD中,AB=4,AD=3,将纸片折叠,使点B落在边CD上的B'处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B相等,则此相等距离为?
矩形纸片ABCD中,AB=4,AD=3,将纸片折叠,使点B落在边CD上的B'处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B相等,则此相等距离为?
矩形纸片ABCD中,AB=4,AD=3,将纸片折叠,使点B落在边CD上的B'处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B相等,则此相等距离为?
AD=3,AB′=4,DB′=√7
BE=EB′=x
CE=3-x,CB′=4-√7
x²=(3-x)²+(4-√7)²
x=(16-4√7)/3、
PB′‖BC
∠BEP=∠EPB′
∠BEP=∠B′EP
∠EPB′=∠B′EP
PB′=B′E=BE==(16-4√7)/3
方法1:
根据折叠的性质知:BP=PB′,若点P到CD的距离等于PB,则此距离必与B′P相同,所以该距离必为PB′.延长AE交DC的延长线于F.
由题意知:AB=AB′=5,∠BAE=∠B′AE;
在Rt△AB′D中,AB′=5,AD=4,故B′D=3;
由于DF∥AB,则∠F=∠BAE,
又∵∠BAE=∠B′AE,
∴∠F=∠B′AE,
∴...
全部展开
方法1:
根据折叠的性质知:BP=PB′,若点P到CD的距离等于PB,则此距离必与B′P相同,所以该距离必为PB′.延长AE交DC的延长线于F.
由题意知:AB=AB′=5,∠BAE=∠B′AE;
在Rt△AB′D中,AB′=5,AD=4,故B′D=3;
由于DF∥AB,则∠F=∠BAE,
又∵∠BAE=∠B′AE,
∴∠F=∠B′AE,
∴FB′=AB′=5;
∵PB′⊥CD,AD⊥CD,
∴PB′∥AD,
∴PB'/AD=FB'/DF
,即PB'/4=5/5+3
解得PB′=2.5;
方法2:
过B′做CD的垂线交AE于P点连接PB易于说明,P即是符合题意的:.
在Rt△AB′D中,AB′=5,AD=4,故B′D=3
所以CB′=2
设BE=a,CE=4-a
又EB′=EB=a,
在Rt△ECB′中
(4-a)^2+2^2=a^2
解得a=2.5
在四边形BPB′E中PB′∥BE且BE=EB′
所以四边形BPB′E是菱形
所以PB′=BE=a=2.5
故所求距离为2.5.
故此相等的距离为2.5.
收起