bn=1/(2n+1)(2n+1),球bn的前N项和Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:02:00
bn=1/(2n+1)(2n+1),球bn的前N项和Tn
bn=1/(2n+1)(2n+1),球bn的前N项和Tn
bn=1/(2n+1)(2n+1),球bn的前N项和Tn
是bn=1/(2n+1)(2n-1)吧
b1=1/3=1/2*(1- 1/3 ),b2=1/15=1/2*(1/3-1/5),b3=1/35=1/2*(1/5-1/7),……bn=1/(2n+1)(2n-1)=1/2*[1/2n-1)-(1/2n-1)]
Tn=b1+b2=+b3+……+bn
=1/3+1/15+1/35+……+1/(2n+1)(2n-1)
=1/2*(1-1/3)+1/2*(1/3-1/5)+1/2*(1/5-1/7)+……+1/2*[(1/2n-1)-(1/2n+1)]
=1/2*[1- 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + …… +(1/2n-1)-(1/2n+1)]
=1/2*[1-(1/2n+1)]
=1/2*[2n/2n+1)]
=n/2n+1
故Tn=n / 2n+1
数列b(n+1)=bn+ 2^n.求bn.
已知数列{ bn } 满足2b(n+1)= bn + 1/bn ,且bn>1,求{bn}通项公式
数列b1=2,b(n+1)=bn+2^(2n+1),求bn
数列{bn}中,b1=1,b(n+1)^2-bn^2=2,求bn
已知数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),求bn
已知数列bn满足bn=b^2n,其前n项和为Tn,求(1-bn)/Tn
bn=1/(2n-1)(2n+1),数列bn的前n项和为Bn,求证,Bn
数列b1=1,b(n+1)=bn+(2n-1)(n∈N),求{bn}通项公式bn
设bn=(n-1)/(an-2),(n大于等于2),an=n^a-n+2,且b(n+1)+b(n+2)+...b(2n+1)
若数列bn满足bn=n^2/2^(n+1),证明bn
设数列{bn}满足bn=n^2/2^(n+1),证明:bn
已知数列满足{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标已知数列{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标
bn+1=bn+2n-1 bn=-1 求bn通项
b(n+1)=1/(-bn+2)怎么求通项公式?
bn=2^(2n-1)-2n,求{bn}的前n项和Tn
bn=(n+1)2n,求数列{bn/1}的前n项和Tn
数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn
数列{bn}满足b(n+1)=2bn+1,n∈N*且b1=3 求{bn}的通项公式