若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:17:12

若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为
若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为

若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为
|m-3 |+(n+2)^2+√8p-5=0
∴m-3=0
n+2=0
8p-5=0
∴m=3
n=-2
p=5/8
∴1/4m-n+p的立方根
=3/4+2+5/8的立方根
=27/8的立方根
=3/2

|m-3 |+(n+2)^2+√8p-5=0
则,m=3,n=-2,p=0.6251/4m-n+p=-5/8立方根为:-5^(1/3)/2