已知数列an满足a1=0且Sn+1=2Sn+1/2n(n+1) 1,求 a2 a3,并证明an+1=2an+n 2,设bn=an+1-an,求证bn+1=2bn+

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:23:50

已知数列an满足a1=0且Sn+1=2Sn+1/2n(n+1) 1,求 a2 a3,并证明an+1=2an+n 2,设bn=an+1-an,求证bn+1=2bn+
已知数列an满足a1=0且Sn+1=2Sn+1/2n(n+1) 1,求 a2 a3,并证明an+1=2an+n 2,设bn=an+1-an,求证bn+1=2bn+

已知数列an满足a1=0且Sn+1=2Sn+1/2n(n+1) 1,求 a2 a3,并证明an+1=2an+n 2,设bn=an+1-an,求证bn+1=2bn+
S(n+1)=2Sn+(1/2)n(n+1)
1,求 a2 a3,并证明a(n+1)=2an+n
S2=2S1+1=1
a2=s2-a1=1
S3=2S2+3=2+3=5
a3=s3-s2=5-1=4
所以a2=1,a3=4;
S(n+1)=2Sn+(1/2)n(n+1)
Sn=2S(n-1)+(1/2)n(n-1)
两式相减:
a(n+1)=2an+(1/2)n(n+1)-(1/2)n(n-1)
=2an+n.
2,设bn=a(n+1)-an,求证b(n+1)=2bn+
a(n+1)=2an+n
a(n+1)+(n+1)=2an+2n+1
[a(n+1)+(n+1)]=2(an+n)+1
[a(n+1)+(n+1)+1]=2(an+n+1)
令cn=an+n+1
c(n+1)=2cn
cn=2^(n-1)c1=2^(n-1) (a1+1+1)=2^n
an+n+1=2^n
an=-n-1+2^n
bn=a(n+1)-an
=(2an+n)-an
=an+n
=(-n-1+2^n)+n
=-1+2^n
b(n+1)=-1+2^(n+1)
=-1+2*2^n
=-1+2*(bn+1)
=2bn +1
第2题简单方法:
bn=a(n+1)-an
=(2an+n)-an
=an+n
an=bn-n
a(n+1)=b(n+1)-(n+1)
b(n+1)-(n+1)=a(n+1)
=2an+n
=2(bn-n)+n
=2bn-n
b(n+1)-(n+1)=2bn-n
b(n+1)=2bn+1

已知数列{an}的前n项和为Sn,且满足an+2Sn×S(n-1)=0,a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求数列{an}的通项公式. 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列{An}前几项和为Sn,且满足An+2Sn×S(n-1)=0(N>且=2),A1=1/2,求{1/Sn}是等差数列 ,另求An表达式 已知数列{an}中的前几项和为Sn且满足a1=0.5,an=-2Sn*S(n-1).证明数列{1/Sn}为等差数列,求Sn与an 已知数列{an}中a1=1,且满足an+an-1不等于0,Sn=1/6*(an+1)(an+2).(1)求通项an,并说明{an}是什么数列(2)求数列{an}的前n项和Sn 已知数列{an}的前n项和为Sn,且满足an+2Sn*S(n-1)=0 (n>=2),a1=0.5.(1)求证:{1/Sn}是等差数列 (2)求an 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an},其前n项和Sn满足S(n+1)=2λSn+1 a1=1 a3=4 试比较Tn/2与Sn大小已知数列{an},其前n项和Sn满足S(n+1)=2λSn+1(λ是大于0的常数) 且a1=1 a3=4 (1)求λ的值(2)求数列{an}通向公式an(3)设数列{nan} 已知数列{an}中,an>0,s=a1+a2+.+an,且an=6sn/(an+3),求sn 已知数列{an}满足a1=2,且2Sn+1Sn/(Sn-Sn+1)=1,求{an}通相公式 高数,已知数列An满足A1=1/2,且前n项和Sn满足Sn=n²An,则An=? 已知数列An满足A1=1/2,且前n项和Sn满足Sn=n²An,则An 已知数列{an}满足Sn+Sn-1=tan2(t>0,n≥2),且a1=0,n≥2时,an>0.其中Sn是数列an的前n项和.已知数列{an}满足Sn+Sn-1=tan2(t>0,n≥2),且a1=0,n≥2时,an>0.其中Sn是数列an的前n项和.(I)求数列{an}的通项公式 已知数列{an}满足:a1=3,an=Sn-1+2n,求数列an及sn 已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an数列{an}满足:an>0,且根号下Sn=an+1/4,求通项an 已知数列an的前n项为Sn,且满足Sn=S(n-1)/2S(n-1)+1(n≥2),a1=2(1)求证:{1/Sn}是等差数列(2)求an的表达式. 已知数列{an}满足a1=1/2,sn=n^2an,求通项an 已知数列{an},满足a1=1/2,Sn=n²×an,求an