已知{an}满足a(n+1)=3an+1 a1=1/2 求证{an+1/2}为等比数列,{an}的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:42:22

已知{an}满足a(n+1)=3an+1 a1=1/2 求证{an+1/2}为等比数列,{an}的通项公式
已知{an}满足a(n+1)=3an+1 a1=1/2 求证{an+1/2}为等比数列,{an}的通项公式

已知{an}满足a(n+1)=3an+1 a1=1/2 求证{an+1/2}为等比数列,{an}的通项公式
用数学归纳法
a1=1/2
a2=3a1+1=5/2
a3=3a2+1=17/2
a1+1/2=1
a2+1/2=3
a3+1/2=9
因此先猜想a[n+1]+1/2=3(an+1/2)
已证n=2,3时成立
假设n=k时成立,即ak+1/2=3(a[k-1]+1/2)
当n=k+1时
a[k+1]=3ak+1,
所以a[k+1]+1/2=3ak+3/2=3(ak+1/2)成立,得证
所以an+1/2=3^(n-1),n>=1
所以an=3^(n-1)-1/2

a(n+1)=3an+1,则a(n+1)+1/2=3(an+1/2),a1=1/2得到a2=5/2,an+1/2是以1为首项,以3为公比的等比数列。an+1/2=1*3^(n-1),所以an=3^(n-1)-1/2