1/1x2+1/2x3+1/3x4+...+1/19x20 请说出道理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:40:00
1/1x2+1/2x3+1/3x4+...+1/19x20 请说出道理
1/1x2+1/2x3+1/3x4+...+1/19x20 请说出道理
1/1x2+1/2x3+1/3x4+...+1/19x20 请说出道理
1/[n(n+1)]=1/n-1/(n+1)
1/1x2+1/2x3+1/3x4+...+1/19x20
=1-1/2+1/2-1/3+1/3+1/4+...+1/19-1/20
=1-1/20=19/20
=1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20
=1-1/20
=19/20
1-1/2+1/2-1/3+1/3-1/4+...-1/20=19/20
=1-1/2+1/2-1/3+1/3-1/4+.....+1/19-1/20=1-1/20=19/20
先裂项,可知:1/[n(n+1)]=1/n-1/(n+1)
所以 1/1x2+1/2x3+1/3x4+...+1/19x20
=1-1/2+1/2-1/3+1/3+1/4+...+1/19-1/20
=1-1/20=19/20
设t=1/x
则原式=(1/1)t^2+(1/2)t^3+……+(1/19)t^20
=t【(1/1)t+(1/2)t^2+.......+(1/19)t^19】
令f(t)=(1/1)t+(1/2)t^2+.......+(1/19)t^19
则f'(t)=1+t+t^2+.........+t^18
=(t^19-1)/(t-1)
对f'(t)积...
全部展开
设t=1/x
则原式=(1/1)t^2+(1/2)t^3+……+(1/19)t^20
=t【(1/1)t+(1/2)t^2+.......+(1/19)t^19】
令f(t)=(1/1)t+(1/2)t^2+.......+(1/19)t^19
则f'(t)=1+t+t^2+.........+t^18
=(t^19-1)/(t-1)
对f'(t)积分,求出f(t)
那么原式=t*f(t)=(1/x)f(1/x)
晕倒。。。。原来你的x是乘号、、、、我还以为是未知数x呢
收起