设x>1,则函数y=(x-1)/(x²+1)的最大值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:10:02
设x>1,则函数y=(x-1)/(x²+1)的最大值是
设x>1,则函数y=(x-1)/(x²+1)的最大值是
设x>1,则函数y=(x-1)/(x²+1)的最大值是
解y=(x-1)/(x²+1)
=(x-1)/[(x-1)²+2(x-1)+1]
=1/[(x-1)²+2(x-1)+1]/(x-1)
=1/[(x-1)+1/(x-1)+2]
由(x-1)+1/(x-1)≥2√(x-1)*1/(x-1)=2
即(x-1)+1/(x-1)+2≥2+2=4
即1/[(x-1)+1/(x-1...
全部展开
解y=(x-1)/(x²+1)
=(x-1)/[(x-1)²+2(x-1)+1]
=1/[(x-1)²+2(x-1)+1]/(x-1)
=1/[(x-1)+1/(x-1)+2]
由(x-1)+1/(x-1)≥2√(x-1)*1/(x-1)=2
即(x-1)+1/(x-1)+2≥2+2=4
即1/[(x-1)+1/(x-1)+2]≤1/4
即y≤1/4
即函数y=(x-1)/(x²+1)的最大值是1/4。
收起
设x>1,则函数y=(x-1)/(x²+1)的最大值是
y=(x-1)/(x²+1) = (x-1)/(x+1)(x-1)
当x >1 时 上下都除以 x-1
y = 1/ (x+1)
最大值为 x=1 时
y = 1/2 但取不到
最大值无限趋近于 2分之1
由y=(x-1)/(x²+1)变形有:yx²-x+2=0
由 △=(-1)²-4×y×2≥0有:y≤1/8
当y=1/8时,x=4
因此:x>1时,0<y≤1/8
当x=4时,函数y=(x-1)/(x²+1)的最大值是1/8