函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数(2)如果f(4)=1,且f(x)在(0,正无穷)上是增函数,则不等式f(3x+1)+f(2x-6)≤3的解集是?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:01:02
函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数(2)如果f(4)=1,且f(x)在(0,正无穷)上是增函数,则不等式f(3x+1)+f(2x-6)≤3的解集是?
函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数
(2)如果f(4)=1,且f(x)在(0,正无穷)上是增函数,则不等式f(3x+1)+f(2x-6)≤3的解集是?
函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数(2)如果f(4)=1,且f(x)在(0,正无穷)上是增函数,则不等式f(3x+1)+f(2x-6)≤3的解集是?
f(3x+1)+f(2x-6)≤3
3f(4)=3;
f(3x+1)+f(2x-6)≤3f(4);
f((3x+1)(2x-6))≤f(4*4*4)
又f(x)为偶函数,所以,
f(|(3x+1)(2x-6)|)≤f(|64|)
f(x)在(0,正无穷)上是增函数,
|(3x+1)(2x-6)|≤|64|
-64
设函数f(x)的定义域为R,当x
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的阶级为
已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数
已知定义域为R+的函数f(x)满足:①x>1时,f(x)
定义域为R的函数f(x)={5^|x-1|-1(x>0) x^2+4x+4(x
已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性.
已知定义域为R的函数f(x)=-2^x+b/2^x+1+2
f(x)是定义域为R的增函数,且值域为R+,则下列函数中为减函数的是Af(x)+f(-x) Bf(x)-f(-x) Cf(x)*f(-x) Df(-x)/f(x)详细过程!
已知函数f(x)的定义域为R,若函数f(x)为奇函数,函数f(x+1)为偶函数,则函数f(x)的周期为多少?
函数f(x)的定义域为{x|x∈R且x≠1,若f(x+1)为偶函数,当x1时,f(x)的减区间是__函数f(x)的定义域为{x|x∈R且x≠1,若f(x+1)为偶函数,当x1时,f(x)的减区间是________________
函数f(x)的定义域为R,任意实数x,总有f(x)=f(x-1)+f(x+1),求证:f(x)为周期函数
若函数f(x)的定义域为R,则函数f(x)+f(-x)的奇偶性为什么?
函数函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数(2)如果f(4)=1,且f(x)
定义域为R的函数f(x)满足f(x+1)=2f(x)在x∈(0,1] f(x)=x^2-x 在x∈[-2,-1]上f(x)的最小值
设定义域为R的函数f(x)={ |lgx|,x>0 -x^2-2x,x
设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:f(x)
设函数f(x)的定义域为R,x0是f(x)的极大值点
判断下列函数是否具有奇偶性?【1】:f(x)=x+x³这一个我会做解:函数的定义域为R,x∈R,有-x∈Rf(-x)=(-x)+(-x)³ =-x-x³ =-(x+x³) =-f(x)【2】h(x)=x³+1【3】f(x)=(x+1)(x-1)【4】h(x)=