计算1/2+1/(2+3)+1/(2+3+4)+.+1/(2+3+4+...+200)这是等差数列,那章的。
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:39:57
计算1/2+1/(2+3)+1/(2+3+4)+.+1/(2+3+4+...+200)这是等差数列,那章的。
计算1/2+1/(2+3)+1/(2+3+4)+.+1/(2+3+4+...+200)
这是等差数列,那章的。
计算1/2+1/(2+3)+1/(2+3+4)+.+1/(2+3+4+...+200)这是等差数列,那章的。
1/2+1/(2+3)+1/(2+3+4)+.+1/(2+3+4+5+...200)
=1/2+1/[2*(2+3)/2]+1/[3*(2+4)/2]+……+1/[199*(2+200)/2]
=1/2+2/(2*5)+2/(3*6)+2/(4*7)+……+2/(199*202)
=1/2+2/3(1/2-1/5)+2/3(1/3-1/6)+2/3(1/4-1/7)+……+2/3(1/199-1/202)
=1/2+2/3(1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……+1/199-1/202)
=1/2+2/3(1/2+1/3+1/4-1/200-1/201-1/202)
=1/2+2/3(13/12-30301/2030100)
=1/2+2/3*2168974/2030100
=1/2+2168974/3045150
=3691549/3045150
我也不懂啊
1/2+1/(2+3)+1/(2+3+4)+......+1/(2+3+4+5+...200)
=1/2+1/[(2+3)*2/2]+1/[(2+4)*3/2]+……+1/[(2+200)*199/2]
=1/2+2/(2*5)+2/(3*6)+2/(4*7)+……+2/(199*202)
=1/2+2/3[(1/2-1/5)+(1/3-1/6)+(1/4-1/7)+……+...
全部展开
1/2+1/(2+3)+1/(2+3+4)+......+1/(2+3+4+5+...200)
=1/2+1/[(2+3)*2/2]+1/[(2+4)*3/2]+……+1/[(2+200)*199/2]
=1/2+2/(2*5)+2/(3*6)+2/(4*7)+……+2/(199*202)
=1/2+2/3[(1/2-1/5)+(1/3-1/6)+(1/4-1/7)+……+(1/199-1/202)]
=1/2+2/3[1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……+1/199-1/202]
=1/2+2/3[1/2+1/3+1/4+1/5+1/6+…………+1/198+1/199
-1/5-1/6-…………-1/198-1/199-1/200-1/201-1/202]
=1/2+2/3[(1/2+1/3+1/4-1/200-1/201-1/202)
=1/2+2/3[13/12-(20301+20200+20100)/4060200]
=1/2+2/3[13/12-60601/4060200]
=1/2+2/3*4337949/4060200
=1/2+1445983/2030100
=(1015050+1445983)/2030100
=2461033/2030100
对!运算过程中涉及到等差数列的概念。
就是计算题中各个分母时,可以看到他们各自是有2到n的等差数列组成,那么它们的和就是利用等差数列求和的公式计算的。就是(首项+尾项)×项数÷2。
就是这一步
=1/2+1/[(2+3)*2/2]+1/[(2+4)*3/2]+……+1/[(2+200)*199/2]
接着又利用了:1/n-1/(n+k)=1/k[1/n(n+k)]
即这几步
=1/2+2/(2*5)+2/(3*6)+2/(4*7)+……+2/(199*202)
=1/2+2/3[(1/2-1/5)+(1/3-1/6)+(1/4-1/7)+……+(1/199-1/202)]
=1/2+2/3[1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……+1/199-1/202]
=1/2+2/3[1/2+1/3+1/4+1/5+1/6+…………+1/198+1/199
-1/5-1/6-…………-1/198-1/199-1/200-1/201-1/202]
最后符号相反的相同数字抵消(从1/5、1/6……1/199),只剩下后面给出的各项,经过运算得出最后结果
收起