高二数学曲线与方程椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:44:16

高二数学曲线与方程椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离
高二数学曲线与方程
椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离

高二数学曲线与方程椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离
7*x^2+4*y^2=28 ,
即x^2/4+y^2/7=1所以设P点坐标为(2cosa,√7sina),则P到直线的距离d=|6cosa-2√7sina-16|/√(3^2+2^2)=|8sin(a+b)-16|/√13 (其中tgb=-3√7/7) 当sin(a+b)=1时,有最小值是:8/根号13=8/13 根号13.

不会啊 啊啊啊啊啊啊啊啊啊啊