x+y+z=2y=3z(y≠0),求(xy+yz+zx)÷(x²+y²+z²)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:35:22

x+y+z=2y=3z(y≠0),求(xy+yz+zx)÷(x²+y²+z²)的值.
x+y+z=2y=3z(y≠0),求(xy+yz+zx)÷(x²+y²+z²)的值.

x+y+z=2y=3z(y≠0),求(xy+yz+zx)÷(x²+y²+z²)的值.
令x+y+z=2y=3z=6k
y = 3k
z = 2k
x = k
(xy+yz+zx)÷(x²+y²+z²)
=(3k²+6k²+2k²)÷(k²+9k²+4k²)
=(11k²)÷(14k²)
=11/14

等于14