m=1 mn=2 1/mn+1/(n+1)(m+1)+1/(n+2)(m+2)+1/(n+3)(m+3)...+1/(n+2010)(m+2010)=多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:36:05
m=1 mn=2 1/mn+1/(n+1)(m+1)+1/(n+2)(m+2)+1/(n+3)(m+3)...+1/(n+2010)(m+2010)=多少?
m=1 mn=2
1/mn+1/(n+1)(m+1)+1/(n+2)(m+2)+1/(n+3)(m+3)...+1/(n+2010)(m+2010)
=多少?
m=1 mn=2 1/mn+1/(n+1)(m+1)+1/(n+2)(m+2)+1/(n+3)(m+3)...+1/(n+2010)(m+2010)=多少?
因为:m=1 mn=2,所以:m=1 n=2/m=2,
把m=1,n=2代入下面式子中,便可得解.
即为:1/1*2+1/(2*3)+1/(3*4)...+1/(2011*2012)
发现没有1/2=1/1-1/2
1/(2*3)=1/2-1/3
1/(3*4)=1/3-1/4依此类推,
1/(2011*2012)=1/2011-1/2022
所以原式=1/2+1/2-1/3+1/3-1/4+1/4-1/5...+1/2010-1/2011+1/2011-1/2012,中间是抵销了,=1-1/2012
=2011/2012
(1-1/2)+(1/2-1/3)+1/3-1/4)
已知m-n=2,mn=1,求多项式(-2mn+2mn+3n)-(3mn+2n-2m)-(m+4n+mn)的值
已知m-n=2,mn=1,求多项式(-2mn+2mn+3n)-(3mn+2n-2m)-(m+4n+mn)的值
1/M+1/N=5 (3M+MN+2N) / (M-MN=3N)
mn=1 m+n=2
m+n=-1 mn=-2
已 知m-n=4,mn=-1,求:(-2mn+2m+3n)-(3mn+2n-2n)-(m+4n+mn)的值
已知m-n=2,mn=1,求多项式(2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值
已知m-n=4,mn=-1,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.
若m-n=4,mn=-1,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)
已知m-n=3,mn=-1,求多项式-2mn+2m+3n-3mn-2n+2m-4n-m-mn的值
若m-n=4,mn=-1求(9-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)
已知m-n=4,mn=-1,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值
若m-n=4,mn=-1,求(-2mn+m+n)-(3mn+5n-5m)-(m+4n-3mn)的值
-2(mn-3m平方)-{m平方-5(mn-m平方)+2mn,其中m=1,n=-2
m+n=-3,mn=2,求-3(1/3n-mn)+2(mn-1/2m)
mn=1,m
因式分解:mn+m-n-1=( )-( )=( )( )
已知m-n=4,mn=1,则(2m+3n-2mn)-(m+4n)-(3mn+2n-2m)=_____