已知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosα,√2sinα)求向量OA与向量OB的夹角范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 05:26:09
已知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosα,√2sinα)求向量OA与向量OB的夹角范围
已知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosα,√2sinα)
求向量OA与向量OB的夹角范围
已知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosα,√2sinα)求向量OA与向量OB的夹角范围
这题需要采用图形解决.分析向量CA,(√2cosα,√2sinα)实际上是一个单位为√2的园的轨迹,该园的圆心为C(2,2),A为园上的点OA与OB的夹角范围即为OA位于园的两个切线的夹角范围.图见http://www.filedropper.com/jieti
向量OA=OC+CA=(2+√2cosα,2+√2sinα)①,
又因为OA⊥CA,所以(2+√2cosα)√2cosα+(2+√2sinα)√2sinα=0,
根据勾股定理,OA=√(OC^2-CA^2)其中OC=2√2,CA=√2,OA=√6,即
(2+√2cosα)^2+(2+√2sinα)^2=6②
①②式联立,可以解出α=-5π/12,11π/12.此时求得的角度是以C为圆心的园上的角度,即CA边的角度.因为OA⊥CA,OA与OB的夹角即为π/2-α,得出结论为π/12到5π/12
向量的加减已知(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0判断三角形ABC的形状
已知向量OB=(2,0),向量OC=(2,2),向量CA=(-1,-3),求向量OA与向量OB夹角
已知向量OA.向量OC满足条件向量OA+向量OB-向量OC=向量0,且【OA】=【OB】=1,【OC】=根号2则三角形ABC的
已知O为原点,向量OA=(3,1)向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标?
已知O为原点,向量OA=(3,1),向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标
3OA向量-2OB向量=(-2,0),OC向量=(-2,1),OA向量*OC向量=2,绝对值OB向量=4,求角BOC
已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),求向量OA与向量OB已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),1、求向量OA与向量OB2、以向量OA与向量OB为邻边作平行四边形OABC,求向量OC
已知向量OA=(1,1),向量OB=(-1,2),以向量OA,向量OB作平行四边形OACB,则向量OC与向量AB的夹角为?
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
3*向量OC-2*向量OA=向量OB,则向量AC=?向量AB
若O为△ABC的内心,且满足(向量OB-向量OC).(向量OB+向量OC-2向量OA)=0,则△ABC的形状为?
若O为三角形ABC的内心,且满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0则三角形的形状
在平面向量直角坐标系xoy中,已知向量OA=(3,-1),向量OB(0,2),若向量OC在平面向量直角坐标系xoy中,已知向量OA=(3,-1),向量OB(0,2),若向量OC·向量AB=0,向量AC=λOB,则实数λ=
已知△OAB是以OB为斜边的等腰直角三角形,OB=根号2 向量OC=向量OA+(1-a)向量OB,向量OC=向量OA+(1-a)向量OB 若a^2>1 则向量OC*向量AB的取值范围是( )A.(负无穷,0)∪(2,正无穷) B,(负无穷,-2)∪
已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA求周长
已知向量OA的绝对值=向量OB的绝对值=向量OC的绝对值=1,向量OA⊥向量OB ,向量CB乘以向量CA≤0,向量OA+向量OB-向量OC的绝对值的最大值?
已知|向量OA|=|向量OB|=1,向量OA与OB的夹角为120°,向量OC,OA的夹角为25°,|向量OC|=2√3,用向量OA,OB表示向量OC 答案是OC=4sin95°·向量OA+4sin25°·向量OB说错了【。是向量
已知向量OA,OB,OC,满足向量OA+OB+OC=0,|OA|=1,|OB|=2,|OC|=3,求OA,OB,OC两两夹角分别为多少?