已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>0) (1)求a与b的数量积用k表示的解析式f(k); (2)求ab的最小值,并求出此时a与b所成的角的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:22:42

已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>0) (1)求a与b的数量积用k表示的解析式f(k); (2)求ab的最小值,并求出此时a与b所成的角的大小
已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>0)
(1)求a与b的数量积用k表示的解析式f(k);
(2)求ab的最小值,并求出此时a与b所成的角的大小

已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>0) (1)求a与b的数量积用k表示的解析式f(k); (2)求ab的最小值,并求出此时a与b所成的角的大小
|ka+b|=√3|a-kb|
==>(kcosα+cosβ)^2+(ksinα+sinβ)2=3[(cosα-kcosβ)^2+(sinα-ksinβ)^2]
k^2+1+2k(cosαcosβ+sinαsinβ)=3[k^2+1-2k(cosαcosβ+sinαsinβ)]
8k(cosαcosβ+sinαsinβ)=2k^2+2
4k(cosαcosβ+sinαsinβ)=k^2+1
(1).ab=cosαcosβ+sinαsinβ=(k^2+1)/4k(k>0)
(2).ab=(k^2+1)/4k=(k/4)+(1/4k)>=2根号下(k/4*1/4k)=1/2
所以ab>=1/2,且当k/4=1/4k时,可以取"="
即k=1(k>0)时,ab取最小值1/2
ab=1/2=|a|*|b|*cosa=1*1*cosa
cosa=1/2
所以a=60度.
ab的最小值是1/2,此时a与b所成的角的大小是60度

已知向量a=(cosα,sinβ),向量b=(cosβ,sinα),0 已知向量a=(cosα,sinα),b=(cosβ,sinβ),0 已知向量a=(cosα,sinα),b=(cosβ,sinβ),向量a-b等于 已知向量A=(cosa,sina) ,向量B=(cosb,sinb)已知向量A=(cosα,sinα) ,向量B=(cosβ,sinβ),且0 高一向量问题.已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),向量c=(cosγ,sinγ)已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),向量c=(cosγ,sinγ)且3cosα+4cosβ+5cosγ=0, 3sinα+4sinβ+5sinγ=0.(1)求证向量a 已知A(向量A,B同)=(cosα,sinα),B=(cosβ,sinβ)(0 已知向量a=(cosα,sinα),向量b=(cosβ,sinβ) 若α-β=π/3,求a+2b向量的绝对值 已知向量a=(cosα,sinα),b=(cosβ,sinβ),0 【在线等】已知向量a=(cosα,sinα),b=(cosβ,sinβ),0 一道向量数学题的解法,已知a=(cosα,sinα),b=(cosβ,sinβ)(0 已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-2b|=|√2a+b|,则cos(α-β)=______ 已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-2b|=|√2a+b|,则cos(α-β)=______ 已知向量a=(cosα,sinα),向量b=(cosβ,sinβ)求a·(a+2b)的取值范围 已知向量a=(cosα,sinα),b=(cosβ,sinβ),且向量a不等于正负向量b,那么向量a+b与向量a-b的夹角的大小 已知向量a向量=(4,3)b向量=(sinα,cosα),且a向量⊥b向量 求tan2α的值 已知向量a=(cosα,sinα)向量b=(cosβ,sinβ)则|a-b|的取值范围为 已知向量a=(cosα,1+sinα),b=(1+cosα,sinα),若绝对值a+b=根号3,求sinαcosα的值已知向量a=(cosα,1+sinα),b=(1+cosα,sinα),若绝对值a+b=根号3,求sinαcosα的值 已知向量a=(1,1),向量b={sin(α-π/3),cos(α+π/3)},且向量a∥向量b,求sin²α+2sinαcosα的值.⊙︿⊙