函数y=2x^3-3x^2-12x+5在[0,3]上的最大值与最小值分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:54:36

函数y=2x^3-3x^2-12x+5在[0,3]上的最大值与最小值分别是
函数y=2x^3-3x^2-12x+5在[0,3]上的最大值与最小值分别是

函数y=2x^3-3x^2-12x+5在[0,3]上的最大值与最小值分别是
函数y=2x^3-3x^2-12x+5
利用导函数y'=6(x^2-x-12)=6(x+1)(x-2)
即x在[0,2]上是减函数,[2,正无穷)为增函数.
所以函数y=2x^3-3x^2-12x+5在[0,3]上的最小值为
f(2)=2*2^3-3*2^2-12*2+5 = -15
最大值有可能为0或3,f(0)=5,f(3)= -4
所以最大值为f(0)=5
谢谢yinxing1006指正,有一个小地方算错了.不过导函数的部分我并没错.