如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N. (1)求证:MN=AM+BN
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:08:04
如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N. (1)求证:MN=AM+BN
如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.
(1)求证:MN=AM+BN
如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N. (1)求证:MN=AM+BN
证明:∵∠C=90°
∴∠MCA+∠BCN=90°
∵AM⊥MN,BN⊥MN
∴∠AMC=∠CMB=90°
∴∠MAC+∠MCA=90°
又∵∠MCA+∠BCN=90°
∴∠MAC=∠BCN
又∠AMC=∠CMB,AC=BC
∴△AMC≌△CNB
∴AM=CN,MC=BN
∴MN=MC+CN=AM+BN
在三角形AMC和三角形CMB中
AC=CB 角AMC=角CMB=90°
又角C=90°
所以角MCA+角NCB=90°
因为角NCB+角NBC=90°
所以角MCA=角CBN
易得出:△AMC全等于△CNB
所以AM=CN MC=MB
所以,得出结论:MN=CM+CN=BN+AM
如有不懂请追问,如果满意请采纳,谢谢~~~
证明:∵∠C=90°
∴∠1+∠2=90°
∵AM⊥MN,BN⊥MN
∴∠AMC=∠CNB=90°
∴∠2+∠3=90°
∠1+∠4=90°
∴∠1=∠3,∠2=∠4
又AC=BC
∴△AMC≌△CNB
∴AM=CN,MC=BN
∴MN=MC+CN=AM+BN
由题知,∠ACB=∠AMN=∠BNM=90°,
故∠MCA+∠NCB=90
又∠ MAC+∠CAB+∠CBA+∠CBN=180°,
故∠MAC+∠CBN=90
因AC=CB
故△MAC≌△NCB
故MC=BN,AM=CN
MN=MC+CN=AM+BN