如图,在三角形ABC中,以AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG、BC,.试判断三角形ABC和AEG面积之间的关系,并说明理由
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:37:07
如图,在三角形ABC中,以AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG、BC,.试判断三角形ABC和AEG面积之间的关系,并说明理由
如图,在三角形ABC中,以AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG、BC,.
试判断三角形ABC和AEG面积之间的关系,并说明理由
如图,在三角形ABC中,以AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG、BC,.试判断三角形ABC和AEG面积之间的关系,并说明理由
答案是相等.
延长EA交过G点的直线于O,且GO垂直EA.
作CK垂直AB于K
所以角BAO=90度
又因为四边形ACFG是正方形.
所以角CAG=90度,且CA=AG(下面有用)
因为角CAG=角BAO
所以角CAG-角CAO=角BAO-角CAO
即是:角GAO=角CAK
又因为角GOA=角CKA=90度
CA=AG
所以三角形AOG全等于三角形AKC
所以CK=GO
又因为四边形AEDB是正方形.
所以AB=AE
在三角形ABC和三角形AEG中
有AB=AE
且有它们的高CK=GO
所以有S三角形ABC=S三角形AEG
证完.
不会
:(1)△ABC与△AEG面积相等.
理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,
∴△ACM≌△...
全部展开
:(1)△ABC与△AEG面积相等.
理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,
∴△ACM≌△AGN,
∴CM=GN,
∵S△ABC=12AB•CM,S△AEG=12AE•GN,
∴S△ABC=S△AEG,
收起
面积相等,
sin∠BAC=sin∠EAG.(互补)
S⊿ABC=bcsin∠BAC/2=bcsin∠EAG/2=S⊿AEG.