lim(n→∞)(2n-3)^20(3n+2)^30/(5n+5)^50如何解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:27:58
lim(n→∞)(2n-3)^20(3n+2)^30/(5n+5)^50如何解
lim(n→∞)(2n-3)^20(3n+2)^30/(5n+5)^50如何解
lim(n→∞)(2n-3)^20(3n+2)^30/(5n+5)^50如何解
(2n-3)^20(3n+2)^30/(5n+5)^50
=(2-3/n)^20/n^20 * (3+2/n)^30*/n^30 / (5+5/n)^50/n^50
=(2-3/n)^20(3+2/n)^30/(5+5/n)^50
所以
lim(n→∞)(2n-3)^20(3n+2)^30/(5n+5)^50
=lim(n→∞)(2-3/n)^20(3+2/n)^30/(5+5/n)^50
=2^20*3^30/5^50
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim(n→∞) (3^n-4^n)/(3^n+2×4^n),请计算,
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim n→∞ (n+2)^3+(2n+3)^3/(n-1)(2n-1)(3n-2) 是多少?
lim(n→∞) 1/(n+1)-2/(n+1)+3/(n+1)-4/(n+1)+...+[(2n-1)/(n+1)]-[(2n)/(n-1)]求极限
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
求lim(n→∞)(3n^3+2n^2+1)/(2n^2+3)
求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)
求极限lim(n→∞)(3n^2-n+1)/(2+n^2)?
lim(n→∞) 2的2n次方-8/4n次方+3n次方