已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式.②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.请把第二问的过程写的详细清楚些,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:39:33
已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式.②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.请把第二问的过程写的详细清楚些,
已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式.
②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.
请把第二问的过程写的详细清楚些,
已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式.②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.请把第二问的过程写的详细清楚些,
a3² = a1 * a7 = 1 * a7 = a7
即:a3² = a7.(1)
假设等差数列的公差为k,那么:
a3 = a1 + 2k = 1 + 2k .(2)
a7 = a1 + 6k = 1 + 6k .(3)
将(2)和(3)代入(1),得到:
(1 + 2k)² = 1+6k
4k² + 4k + 1 = 1 + 6k
4k² - 2k = 0
4k(k-1/2) = 0
所以:k = 0或者k=1/2
因为公差不为0,所以k=1/2,
所以:an = a1 + (n - 1)k = 1 + (n - 1) / 2 = (n + 1) / 2
即:an = (n + 1) / 2
设等差数列公差为d, 则a3=a1+2d,a7=a1+6d. 由题意,a1,a3,a7 成等比数列,所以 a1a7=a3^2, 即 a1(a1+6d)=(a1+2d)^2, 所以 2a1*d=4d^2, 因为d不等于0,两边约去d即知 a1=2d. 又因为a1,a3,a7是等比数列{bn}的连续三项,所以等比数列的公比 q=a3/a1=(a1+2d)/a1=4d/(2d)=2, 即等比数列的公比为...
全部展开
设等差数列公差为d, 则a3=a1+2d,a7=a1+6d. 由题意,a1,a3,a7 成等比数列,所以 a1a7=a3^2, 即 a1(a1+6d)=(a1+2d)^2, 所以 2a1*d=4d^2, 因为d不等于0,两边约去d即知 a1=2d. 又因为a1,a3,a7是等比数列{bn}的连续三项,所以等比数列的公比 q=a3/a1=(a1+2d)/a1=4d/(2d)=2, 即等比数列的公比为2,又b1=1, 所以 b2005=b1*q^2004=2^2004.
收起