函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.当x大于等于1且小于等于2时,f(x)=log(a)(x) (a>1).1.,求x∈〔-1,1〕时,函数f(x)的表达式.2,求x∈〔2k-1,2k+1〕(x∈Z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:19:00

函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.当x大于等于1且小于等于2时,f(x)=log(a)(x) (a>1).1.,求x∈〔-1,1〕时,函数f(x)的表达式.2,求x∈〔2k-1,2k+1〕(x∈Z
函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.当x大于等于1且小于等于2时,f(x)=log(a)(x) (a>1).
1.,求x∈〔-1,1〕时,函数f(x)的表达式.
2,求x∈〔2k-1,2k+1〕(x∈Z)时,函数f(x)的表达式.

函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.当x大于等于1且小于等于2时,f(x)=log(a)(x) (a>1).1.,求x∈〔-1,1〕时,函数f(x)的表达式.2,求x∈〔2k-1,2k+1〕(x∈Z
f(x+1)=f(x-1)与f(x+2)=f(x)是等价的
所以f(x)的周期是2
1《x

2.
因为 f(x+2)=f(x)
所以 f(x+2k)=f(x)(k∈Z)
所以 x∈(2k-1,2k+1) f(x)=f(x-2(k-1)) (x-2k+2)∈(1,3)
因为 f(x)=log(a)(x) x∈(1,2)
所以f(x-2k+2)=f(x)=log(a)(x-2k+2) x∈(2k-1,2k)
而 x∈(2k-1,2k+1)...

全部展开

2.
因为 f(x+2)=f(x)
所以 f(x+2k)=f(x)(k∈Z)
所以 x∈(2k-1,2k+1) f(x)=f(x-2(k-1)) (x-2k+2)∈(1,3)
因为 f(x)=log(a)(x) x∈(1,2)
所以f(x-2k+2)=f(x)=log(a)(x-2k+2) x∈(2k-1,2k)
而 x∈(2k-1,2k+1) f(x)=f(x-2(k+1)) (x-2k-2)∈(-3,-1)
因为 f(x)=log(a)(-x) x∈(-2,-1)
f(x-2k+2)=f(x)=log(a)(-x+2k+2) x∈(2k,2k+1)
综上:
{ f(x-2k+2)=f(x)log(a)(x-2k+2) x∈(2k-1,2k)
{
{ f(x-2k+2)=f(x)=log(a)(-x+2k+2) x∈(2k,2k+1)
验证:
当k=0时,
{ f(x)=log(a)(x+2) x∈(-1,0)
{
{ f(x)=log(a)(-x+2) x∈(0,1)
当k=1时,
f(x)=log(a)(x) x∈(1,2)
当k=-1时
f(x)=log(a)(-x) x∈(-2,-1)

收起

函数f(x)是定义在R上的偶函数,且在{x|x 已知定义在R上的函数y=f(x)是偶函数,且当x≥0时,f(x)=2^(x-1) 已知函数y=f(x)是定义在R上的偶函数,当0 函数f(x)是定义在R上的偶函数,且f(x)=f(2-x),当-1 定义在R上的函数f(x)为增函数,命题P函数y=f(x)+f(-x)在R上是偶函数且导函数为增函数,命题Q函数y=-f(x)+f(-x)是R上的减函数且导函数为偶函数,问P,Q为真命题还是假命题,为什么 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数 已知函数y=f(x)是定义在R上的偶函数,f(x+2)f(x)=1对于x∈R恒成立,且f(x)>0,则f(119)= 定义在实数集上的函数f(x),对任意x,y属于R有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)=1求y=f(x)是偶函数 已知函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,解不等式f(x)<0 函数fx是定义在R上的偶函数且在(-∞,0)上是增函数又f(-3)=0,则f(x) /x 函数fx是定义在R上的偶函数且在(-∞,0)上是增函数又f(-3)=0,则f(x) /x 若函数y=f(x)是定义在R上的偶函数,在(-∞,0】上是减函数, 函数f(x)是定义在R上的函数,且对于任意实数x,y都有f(x+y)=f(x)+f(y)+2xy+3成立且f(-1)=0(1)求f(1),f(2)的植(2)若函数y=f(x+1)是偶函数,求f(x)的解析式 已知函数f(x)是定义在R上的偶函数,且当x≥0,f(x)=x²—2x 已知定义在R上的函数f(x)是偶函数,且x>0时,f(x)=-2x+1 (1)当X 定义在R上的函数y=f(x)是偶函数的必要条件是f(-x)/f(x)=1为什么是假命题 高一上学期关于函数的数学题:定义在R上的函数f(x),对任意的函数,x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y) ,且f(0)≠0,.(1) 求证:f(0)=1 (2)求证:f(x)是偶函数.(要求:解题思路清晰) 函数y=f(x)是定义在R上的奇函数,函数y=f(x-1)是定义在R上的偶函数,则f(2012)=?