已知f(sin(x/2))=1+cosx,则f(cos(x/2))的n阶导数=f(cos(x/2))的n阶导数 原文是(d^nf(cos(x/2)))/(dx^n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:39:28

已知f(sin(x/2))=1+cosx,则f(cos(x/2))的n阶导数=f(cos(x/2))的n阶导数 原文是(d^nf(cos(x/2)))/(dx^n)
已知f(sin(x/2))=1+cosx,则f(cos(x/2))的n阶导数=
f(cos(x/2))的n阶导数 原文是(d^nf(cos(x/2)))/(dx^n)

已知f(sin(x/2))=1+cosx,则f(cos(x/2))的n阶导数=f(cos(x/2))的n阶导数 原文是(d^nf(cos(x/2)))/(dx^n)
f(sin(x/2))=1+cosx
=1+1-2sin^2(x/2)
=2-2sin^2(x/2)
f(x)=2-2x^2
f(cos(x/2))=2-2cos^2(x/2)=1-cosx
f'=sinx
f''=cosx
f'''=-sinx
f''''=-cosx
f^(5)=-sinx
f^(6)=-cosx
f^(7)=sinx
可见6个一循环