(1+x)^3+(1+x)^4+……+(1+x)^n+2的展开式中,含x^2项的系数是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:58:30
(1+x)^3+(1+x)^4+……+(1+x)^n+2的展开式中,含x^2项的系数是多少
(1+x)^3+(1+x)^4+……+(1+x)^n+2的展开式中,含x^2项的系数是多少
(1+x)^3+(1+x)^4+……+(1+x)^n+2的展开式中,含x^2项的系数是多少
C3(2)+C4(2)+------Cn+2(2)
=[3*2+4*3+------(n+2)(n+1)]/2
=[2^2+3^2+-----+(n+1)^2+2+3+------+(n+1)]/2
=[(n+1)(n+2)(2n+3)-6]/12+n(n+3)/4
=(5n^3+9n^2+22n)/12
1x+2x+3x+4x+5x+6x+7x…+99x=100
*-----------------------------------------------*| 6 4 X | 8 X X | X X 5 || X X X | X X X | X 7 8 || X X X | X X X | X X X ||---------------+---------------+--------------- || X X X | X X X | 5 1 X || X X X | X 6 X | X X X || 8 X X | 3 5 X | 2 X X ||
x^2+x+1=0,求x^2+x+1+x^3+x^4+……+x^2006
f(x)=x(x-1)(x+2)(x-3)(x+4)……(x+100),求f'(1)
化简:1+x+x(1+x)+x(1+x)^2+x(1+x)^3+……+x(1+x)^2005
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) …… 1/(x+2005)(x+2006)=1/2x+4012
试求|x-1|+|x-2|+|x-3|+|x-4|+……+|x-1999|的最小值
(x^24 x^23 x^22 …… x)÷(x^8+1)×(x^3+x^2-x-1)÷(x-1)÷(x^4+1)求值(x^24+x^23+x^22+……+x+1)÷(x^8+1)×(x^3+x^2-x-1)÷(x-1)÷(x^4+1)
1-x+x^2-x^3+x^4……-x^2009+x^2010=?1-x+x^2-x^3+x^4……-x^2009+x^2010=?
化简1/(x+1)(x+2)+1/(x+3)(x+4)+……1/(x+2005)(x+2006)=1
1X+2X+3X…+98X+99X+100X=50500X X等于多少?
计算1/x(x+2)+1/(x+2)(x+4)+…+1/(x+98)(x+100)
f(x)=1+x-x^2/2+x^3-x^4+…+x^2001/2001,求零点个数
计算:1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)+……+1/(x-2010)(x-2011)
计算(x+1)(x+2)/1+(x+2)(x+3)/1+(x+3)(x+4)/1+……+(x+2008)(x+2009)/1RT
解方程:1/(x+1)(x+2)+1/(x+3)(x+4)+……+1/(x+2010)(x+2011)=(2x+4019)/(3x+6033)
已知1+x+x^2+x^3+x^4=0,求多项式1+x+x^2+x^3+……+x^2014的值
已知1+x+x^2+x^3+x^4=0,求多项式1+x+x^2+x^3+……+x^2014的值