直线l:y=kx+1与双曲线C:3x^-y^=1相交于不同的A,B两点,(1)求AB的长度;(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值;若不存在,写出理由.^表示平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:59:45

直线l:y=kx+1与双曲线C:3x^-y^=1相交于不同的A,B两点,(1)求AB的长度;(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值;若不存在,写出理由.^表示平方
直线l:y=kx+1与双曲线C:3x^-y^=1相交于不同的A,B两点,
(1)求AB的长度;(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值;若不存在,写出理由.
^表示平方

直线l:y=kx+1与双曲线C:3x^-y^=1相交于不同的A,B两点,(1)求AB的长度;(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值;若不存在,写出理由.^表示平方
1,将直线方程和曲线方程联立求解即可得到一个关于X的一元二次方程,再根据韦达定理(根与系数的关系)将y=kx+1代入C的方程得(3-k^)x^-2kx-2=0(k不等于3)所以X1+X2=2k/(3-k^);X1*X2=2/(k^-3);所以AB^=(1+k^)*[(X1+X2)^-4X1X2;将X1+X2=2k/(3-k^);X1*X2=2/(k^-3);代入AB的弦长中即可求出AB了,结果为2*根号[(1+k^)(6-k^)]/(3-k^)(方括号中的为根号下的项)
2.以线段AB为直径的圆经过坐标原点,则,AO和BO垂直,所以斜率之积为-1.即Y1Y2=-X1X2.(*)将Y1=kX1+1,Y2=kX2+1代入(*)式即可得到(k^+1)X1X2+k(X1+X2)+1=0(Ⅳ)再将X1+X2=2k/(3-k^);X1*X2=2/(k^-3);代入(Ⅳ)即可得到k^=1,所以k=+ -1,所以存在k满足条件.[设A(X1,Y1) B(X2,Y2)]
好累,花了一个小时了,

直线l:y=kx+1与双曲线C:3x^2-y^2=1 相交于不同的A,B两点.求AB的长度 急求!直线L:y=kx-1与双曲线C:3x^2-y^2=1交于A,B,双曲线C与x轴正半轴交于点M,直线L:y=kx-1与双曲线C:3x^2-y^2=1交于A,B,双曲线C与x轴正半轴交于点M,试推断是否存在实数k,使得以线段AB为直径的圆恰 讨论直线l:y=kx+1与双曲线C:x²-y²=1的公共点的个数 讨论直线l:y=kx+1与双曲线C:x^2--y^2=1的公共点的个数如题,详细过程,谢谢. 设双曲线C的方程为x^2/4-y^2=1,支线L的方程是y=kx+1在下列情况下,分别讨论k的范围 直线L与双曲线C(1)有 已知双曲线C:x^2-y^2=1与直线:Y=kx+1.k≠1是直线l与双曲线有两个不同交点的什么条件 已知直线L:Y=KX+1与双曲线3X平方-Y平方=1相交与A、B两点.求实数K的取值范围 已知双曲线C的中心在原点,抛物线y^=2√5 x的焦点是双曲线C的一个焦点,切双曲线C过点(1,√3),与直线L:y=kx+1 交于A,B两点,(1)求双曲线C的方程;(2)k为何值时向量OA垂直向量OB 数学基础不 直线l:y=kx+1与双曲线C:3x^2-y^2=1 相交于不同的A,B两点直线l:y=kx+1与双曲线C:3x^2-y^2=1 的左支交于A与右支交于B(1)求实数k的取值范围(2)若以AB为直径的圆过坐标原点O,求椭圆方程. 直线l:y=kx+根号2与双曲线C:x^2/3-y^2=1交于不同的两点A.B,且向量OA.向量OB<6,求k值范围 直线L:Y=KX+2与双曲线C:4X^2-9Y^2=36只有一个交点,则K的去值范围是? 双曲线C的中心在原点,右焦点为F(2√3/3,0),渐进线方程为y=±√3x.⑴求双曲线C的方程⑵设直线L:y=kx+1与双曲线C交于A,B两点,问:当k为何值时,以AB为直径的圆过焦点 已知双曲线C:X^2-X^2=1和直线l:y=kx-1,若L与C交于A,B两点,o为原点,三角形AOB面积为根号k,求K 已知直线l:y=kx+1与双曲线3x平方-y²=1相交与A、B两点.求O为坐标原点,且OA垂直OB,求直线l的倾斜角α的值 已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2根号3 (1)求双曲线C的方程 (2)若直线l:y=kx+根号2与...已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2根号3 (1)求双曲线C的方程 (2)若直线l: 1.已知抛物线y2=8x的焦点与双曲线x2/a2-y2=1的一个焦点重合,则该双曲线的离心率为2.若直线l:y=kx+1被圆C:x2+y2-2x-3=0截得的弦最短,则直线l的方程是 已知曲线C:x^2-y丨y丨=1,若直线l:y=kx-m与双曲线C有两个不同的公共点,求k的取值范围 双曲线方程为x^2-y^2=1,设直线y=kx+1与双曲线c交于AB两点,求k的取值范围