如图,圆O的内接三角形ABC中,AB=AC,D是圆O上的一点,AD的延长线交BC的延长线于点P,若圆O的直径为25,AB=20.D=15求PC和DC的长AB=20,AD=15.打错了
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:50:35
如图,圆O的内接三角形ABC中,AB=AC,D是圆O上的一点,AD的延长线交BC的延长线于点P,若圆O的直径为25,AB=20.D=15求PC和DC的长AB=20,AD=15.打错了
如图,圆O的内接三角形ABC中,AB=AC,D是圆O上的一点,AD的延长线交BC的延长线于点P,
若圆O的直径为25,AB=20.D=15求PC和DC的长
AB=20,AD=15.打错了
如图,圆O的内接三角形ABC中,AB=AC,D是圆O上的一点,AD的延长线交BC的延长线于点P,若圆O的直径为25,AB=20.D=15求PC和DC的长AB=20,AD=15.打错了
第一个问题:求DC的长.
作直径AE,连结CE,再过D作DF⊥AE交AE于F,令AE与BC的交点为G.
∵AE是直径,∴AC⊥CE.
∴由勾股定理,有:CE=√(AE^2-AC^2)=√(AE^2-AB^2)=√(25^2-20^2)=15.
由AD=15、CE=15,得:AD=CE,∴DC∥AE.
∵AE是直径,∴AB⊥BE.
由AB=AC、AE=AE、∠ABE=∠ACE=90°,得:△ABE≌△ACE,∴∠BAE=∠CAE.
由AB=AC、∠BAG=∠CAG,得:AG⊥BC.
由FG⊥GC、FG∥DC、DF⊥FG,得:CDFG是矩形,∴DC=FG.
∵CDFG是矩形,∴DF=CG,又AD=CE、∠AFD=∠EGC=90°,∴△ADF≌△CEG,
∴AF=EG.
∵AC⊥CE、CG⊥AE,∴由射影定理,有:EG×AE=CE^2,∴25EG=15^2,∴EG=9.
∴AF=EG=9.
∴FG=AE-AF-EG=25-9-9=7,∴DC=FG=7.
第二个问题:求PC的长.
由勾股定理,有:CG=√(CE^2-EG^2)=√(15^2-9^2)=12.
而AG=AE-EG=25-9=16.
∵DC∥AG,∴△PDC∽△PAG,∴PC/PG=DC/AG=7/16,∴PC/(PC+CG)=7/16,
∴PC/CG=7/(16-7)=7/9,∴PC=(7/9)CG=(7/9)×12=28/3.
D=15? AD=15吗