已知sinαcos(α+β)=sinβ求证tan(α+β)=2tanα

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:28:05

已知sinαcos(α+β)=sinβ求证tan(α+β)=2tanα
已知sinαcos(α+β)=sinβ求证tan(α+β)=2tanα

已知sinαcos(α+β)=sinβ求证tan(α+β)=2tanα
sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα
所以sinαcos(α+β)=sin(α+β)cosα-cos(α+β)sinα
2sinαcos(α+β)=sin(α+β)cosα
两边除cos(α+β)cosα
2sinα/cosα=sin(α+β)/cos(α+β)
所以tan(α+β)=2tanα