已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)(1)当X=派/3时,求向量a,C的夹角.(2)当X属于[0,派/2]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:30:09

已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)(1)当X=派/3时,求向量a,C的夹角.(2)当X属于[0,派/2]
已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,
已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)(1)当X=派/3时,求向量a,C的夹角.(2)当X属于[0,派/2]时求函数f(X)=2a*b+1的值域

已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)已知向量a=(cosX,sinX),b=(-cosX,cosX),C=(-1,0)(1)当X=派/3时,求向量a,C的夹角.(2)当X属于[0,派/2]
(1)、|a|=√[(sinx)^2+(cosx)^2]=1,|c|=1,
a•c=-cosx,
设向量a、c的夹角为α,
cosα= a•c/(|a|*|c|)=-cosx/1,
x=π/3,cosα=-cos(π/3)=-1/2,
α=120°,
(2),a•b=-(cosx)^2+sinxcosx
=-(1+cos2x)/2+sin2x/2
=(sin2x-cos2x)-1/2
=√2[(√2/2)sin(2x)-√2/2cos(2x)]-1/2
=√2sin(2x-π/4)-1/2,
f(x)=2√2sin(2x-π/4)-1+1,
f(x)= 2√2sin(2x-π/4),
故f(x)∈[-2√2,2√2].

已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0 已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0 已知向量a=(2sinx,2cosx),b=(cosx,sinx) 已知向量a=(sinx,cosx),向量b=sinx,sinx),向量c=(-1,0) 若向量a*向量b=1/2(sinx+cosx),求tanx 已知向量a=(2sinx,cosx)向量b=(根号3cosx,2cosx)定义域f(x)=向量a*b-1 已知向量a=(1,sinx),b=(1,cosx),|a-b|的最大值 已知向量a=(2cosX,cosX),向量b=(cosX,2sinX),记f(x)=a 已知向量a=(2sinx,cosx)b=(√3cosx,2cosx)定义f(x)=向量a*b-1求对称轴. 已知向量a=(2cosx,sinx)向量b={cos(x-π/3),√3cosx-sinx}求f(x)的解析式(详细一点)已知向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的表达式 已知向量a=(1+sin2x,sinx-cosx),向量b=(1,sinx+cosx),f(x)=向量a*向量b求f(x)的值域 已知向量a=(sinx,cosx)向量b=(1,根号3)则|a+b|最大值 已知向量a=(sinx,cosx)向量b=(1,根号3)则|a-b|最大值 已知向量a=(3,-4),向量b(cosx,sinx),则|a-2b|取值范围 已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx)当x属于[0,已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx) (1)当x属于[0,派/2]时,求向量c乘向量d的最大值.(2)设函数f(x)=(向量a 已知向量a=(cosx,sinx),b=(cosy,siny),0 已知向量a=(sinx+cosx,sinx-cosx),则向量a的模(长度)等于多? 已知向量a=(√3sinx,cosx)向量b=(cosx,-cosx).当属於(π/3,7π/12)时,求cos2x 已知向量a(cosx,1)向量(1,-sinx)向量a垂直向量b则sin2x+cos2x=